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1 Introduction

Rule-based rewriting is ubiquitous in computing [DJ89, KDV90]. Many languages provide
rewriting mechanisms for expressing user-defined code analyses and optimizations [JTH01,
RO10, ERKO11], and many others adopt it as a model of computation [BvEVLP87, Dau92,
Mes92, Sew98, Gra09].

We believe that rewrite rules can be a more convenient abstraction for building inter-
preters than functions or objects. Prior systems artificially restrict the rewriting model by
forcing programs to either simulate functions with rewrite rules or vice versa. However,
rewrite rules are not functions and so the abstraction inevitably leaks.

We introduce Treep, a language for building interpreters with constructs that complement
the strengths of rewrite rules. Treep aims to simplify the creation, interpretation, and
serialization of abstract syntax trees. The Treep design has three main goals.

1. Custom parsing and printing should be easier to do with native constructs than with
external parser generators.

2. Rewrite rules should be as easy to express, apply, and compose as functions are in a
functional language.

3. Extensibility is a top priority—primitive constructs should “stay out of the way” of
user-defined constructs.

Section 2 introduces Treep syntax and semantics through a series of examples of pro-
gressively increasing complexity. Section 3 explains details of the prototype implementation
relevant to the discussion in Section 1, including the command line arguments of the in-
terpreter, minutia of its parser, and special forms available to Treep programs at run time.
Section 4 formalizes Treep using operational semantics in a small-step style. Section 5 pro-
poses future work and concludes.
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term ::= term --> term
∣∣∣ term | term∣∣∣ term |- term

∣∣∣ term ||- term∣∣∣ term = term
∣∣∣ ! term

∣∣∣ term && term
∣∣∣ term || term∣∣∣ #< term >#

∣∣∣ #[ term ]#∣∣∣ atom
atom ::= _

∣∣∣ symbol ∣∣∣ _ symbol
∣∣∣ " char∗ "

∣∣∣ #{ char∗ }#∣∣∣ #f
∣∣∣ ## symbol

Figure 1: The abstract syntax of terms in Treep.

2 Treep by example

In this section, we introduce the Treep language and explore its benefits to programmers
through a number of examples.

Treep offers a permissive lexical syntax and a list-based phrase syntax. Figure 1 gives
the abstract syntax of terms. Section 3 explains the concrete syntax for symbols, which is
similar to Scheme.

Treep models a computation as a series of rule-based rewrites. Throughout the evaluation
process, some set of rules is actively transforming the program state. The active rule set
may be empty and may change over time. A rule is a pair of terms joined by an arrow. We
call the left term the pattern and the right term the target.

pattern --> target

When the rule above is active, it replaces all occurrences of pattern with target. A pattern
is a template for matching other terms and may include variables and wildcards. A variable is
a symbol prefixed by an underscore. For example, the following rules implement the familiar
pair deconstructors of Haskell.

fst (_a,_) --> a snd (_,_b) --> b

Treep allows PCRE-compatible regular expressions in rule patterns. A regexp is a se-
quence of characters surrounded by special braces, #{ and }#. A pattern with a regexp will
not match unless the regexp coincides with a matching string. The rule set below implements
a simple recognizer for the integers.

(recognize #{^ -?[0 -9]+$}# --> accept)

(recognize _ --> reject)

The first rule translates the list recognize "-27" into the symbol accept. Rule precedence
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(#{^(.+) \Q+\E (.+)$}# --> \1 + \2)

(#{^(.+) \Q*\E (.+)$}# --> \1 * \2)

(#{^[0 -9]+$}# --> #<\0>#)

|-

"1 + 2 * 3 + 4 * 5"

Figure 2: A regular arithmetic expression parser.

is set by the order in which the rules are defined, so the wildcard does not match unless
the regular expression fails. Regexps may contain unnamed capture groups. A successful
capture binds its result to a backreference, denoted by a number prefixed with a backslash.
As in Perl, backreference numbering begins at 1 and increases in a breadth-first manner.
Additionally, backreference \0 refers to the entire regexp match.

Patterns may be guarded against indiscriminate matching. A guard term is a pair of
terms joined by a vertical bar. When a rule pattern is a guard term, we call the left part a
guarded pattern and the right part its guard. This form of pattern will match a term only
if its guarded pattern matches the term and its guard does not evaluate to #f, the special
symbol representing Boolean false. In the following rules, the pattern on the left matches
anything while the pattern on the right matches nothing.

_ --> 17 _ | #f --> 17

Treep is an explicitly multi-phased language, which means programs must specify the
boundary between each phase of evaluation. A phase is a pair of terms joined by a turnstyle.
A phase is proper if it is the only top-level term in the program. We call the left part of
a proper phase the environment and the right part the stage. A rule set is active iff it is
the environment of a running program. When the stage of a proper phase reaches a normal
form with respect to its environment,1 the phase reduces to its stage—the environment and
turnstyle disappear.

Figure 2 demonstrates a simple two-phase program. Phase one defines a parser for regular
arithmetic expressions. The first two rules establish the usual order of operations for addition
and multiplication. The third rule uses a parse term to transform a sequence of digits into a
number. A parse term is a list surrounded by special angle brackets, #< and >#. When the
list inside a parse term evaluates to a string, the built-in parser consumes it and replaces
the parse term with the result. Phase two holds the input string, "1 + 2 * 3 + 4 * 5".
Figure 16 gives the complete derivation of this program.

The phase operator is right-associative and has very low precedence. Occasionally, we
would like to force evaluation of a term early or in an unconventional order. The force
operator is a turnstyle with a double vertical bar (||-). It denotes a phase boundary, but
short circuits the default order of evaluation. We call a forced phase a sub-evaluation.

1In Treep, the concept of normal form only makes sense within the context of an environment.
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(_a + _b --> ##+ a b)

(_a * _b --> ##* a b)

|-

calc0 --> ##load "calc0.trp"

|-

(calc0 ||- "1 + 2 * 3") + (calc0 ||- "4 * 5")

Figure 3: A regular arithmetic expression evaluator.

Figure 3 demonstrates the use of force to simulate object-oriented message passing. Sup-
pose file "calc0.trp" contains the first phase of Figure 2. Phase one specifies how to
evaluate infix arithmetic operations. Phase two imports the parser. The load operation has
very high precedence, so the parser code is subject to rewriting by the rules in phase one.
These rules transform the parser into an evaluator. Phase three sub-evaluates two arithmetic
expressions and combines the results. The final result is 27.

The program in Figure 3 uses pragmas to perform several basic operations. A pragma
is a special symbol prefixed with two sharps. Pragmas enable communication with the host
platform. Treep relies on pragmas for most non-rewrite operations, including addition (##+)
and multiplication (##*). See section 3 for details on pragmas.

The remaining four Treep constructs enable the creation of simple key-value stores called
maps. A map is a dictionary that binds symbols to terms. When a map comprises the
environment of a proper phase, it provides a simple form of explicit substitution. This is
the same mechanism used internally to substitute variables in rule targets after successful
pattern matches. A map constructor is a pair of terms joined by an equals sign. The left
part is a pattern. We call the right part the source.

pattern = source

When source reaches a normal form, it is compared against pattern. Upon success, the
map constructor reduces to a map containing the captured variables, which may be empty.
Upon failure, it reduces to #f.

The final three constructs give Boolean-like semantics to maps. Intuitively, the special
symbol #f is “false” and any other normal form is “true.” The negation (!) prefix replaces
#f with the empty map and anything else with #f. For example, the two left-most terms
below evaluate to #f, while the two on the right evaluate to the empty map.

x = y !(x = x) !(x = y) x = x

A disjunction is a pair of terms joined by two vertical bars (||). Evaluation of disjunctions
is short-circuiting in the following sense. The left part evaluates first; if it evaluates to #f, the
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(_a * _b --> ##* a b)

(_a - _b --> ##- a b)

(_a / _b --> ##div a b)

(_a % _b --> ##mod a b)

|-

(_b ^ 0 --> 1)

(_b ^ 2 --> b * b)

(_b ^ _p | 0 = p % 2 --> (b ^ (p / 2)) ^ 2)

(_b ^ _p --> b * (b ^ (p - 1)))

|-

2 ^ 7

Figure 4: An integer power function.

disjunction reduces to the right part—the left part disappears. If the left part evaluates to
any other normal form, the disjunction reduces to it—the right part disappears, unevaluated.
Below, the left term evaluates to the empty map and the right term evaluates to #f.

x = y || x = x x = y || y = x

A conjunction is a pair of terms joined by two ampersands (&&). Evaluation of conjunc-
tions is also short-circuiting, but in a slightly more complex way. If the left part evaluates
to #f, the conjunction reduce to #f—the right part disappears, unevaluated. If the left part
evaluates to any other normal form that is not a map, the conjunction reduces to the right
part—the left part disappears. If the left part evaluates to a map, then the right part evalu-
ates before the left part disappears. If the right part also evaluates to a map, the conjunction
reduces to a map containing the union of the two. Otherwise, the conjunction reduces to the
right part, as if the left part were any other non-false normal form. For example, the terms
below evaluate to #f, 22, and the empty map, respectively.

#f && x = x x = x && 22 x = x && y = y

Negations, conjunctions, and disjunctions enable incremental and conditional construc-
tion of maps. They are designed to enrich the expressive power of pattern guards. For
example, the program in Figure 4 implements the well-known “exponentiation by squaring”
optimization with the map constructor in the guard of its third rule. The final result of this
program is 128, and Figure 17 gives the corresponding derivation.

As a final note, Figure 5 demonstrates another use of force; this time, as a code import
mechanism. Suppose file "pow.trp" contains the first two phases of Figure 4. Then stage
one of Figure 5 loads the file, evaluates its contents, and sets the resulting rule set as the
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(||- ##load "pow.trp")

|-

_a fifth --> a ^ 5

Figure 5: A specialized power function.

environment. The final result of this program is a rule for which a recursive application of the
power operator has been unrolled. Figure 18 shows the derivation of the rule. This example
occurs in the Multi-Stage Programming (MSP) literature as an illustration of user-defined
program specialization [Tah99, RO10], and the ease with which it is expressed here suggests
a connection between Treep and MSP.

2.1 An HTTP request parser

Behavior of the Treep parser can not be altered directly. Instead, parser “extensions” are just
Treep programs that use regular expressions to decompose strings into smaller fragments that
can be altered and then consumed by the built-in parser. Perl is another language designed
for processing strings with regular expressions, but Perl and Treep have dramatically different
designs.

Figure 6 illustrates a regular expression-based implementation of an HTTP request parser
in Perl. The parse procedure performs a number of regular expression matches, each ex-
tracting a different part of the serialized request, and returns a reference to a hash that
names those parts when applied to a valid request. This approach fully exploits the conve-
nience of Perl string processing constructs and the implicit variable to produce compact and
reasonably efficient code. It can handle any number of headers and tolerates empty request
bodies.

However, this approach has a number of disadvantages. First, the procedural style is ver-
bose. For example, the parser in Figure 6 needs two short-lived temporary variables, $h and
$b, and enforcing tight limits on the scope of these temporaries would require nested blocks
or extra procedure calls. Second, heavy reliance on automatic run-time optimization makes
reasoning about performance difficult. For example, the effects of tight variable scoping on
memory conservation are not always clear because the default memory manager may not free
storage at end of scope [X15]. Finally, Perl prioritizes string processing over user-defined
(e.g., algebraic) data types, which complicates other aspects of interpreter construction. For
example, although serializing a hash takes a simple string interpolation, matching against a
composite data structure involves nested if statements or dispatch tables.

Figure 7 shows how an equivalent parser can be implemented in Treep. The program
is divided into three distinct phases. The first phase defines a rule that binds the symbol
Next to a regexp that matches a line terminator sequence and captures the remainder of the
request in a backreference. Phase two defines regexps for deconstructing the initial request
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sub parse {

my ($h, $b) = split /\r\n\r\n/s, $_[0], 2;

my @head = split /\r\n/, $h;

my %req;

if ((shift @head) =~ m{^([^ ]+) ([^ ]+) HTTP /1\.1$}) {

%req = (method => $1, url => $2, body => $b);
} else { die "bad request" }

foreach (@head) {

if (/^([^:]+): (.+)/) {

$req{$1} = $2;
} else { die "bad header" }

}

return \%req;

}

Figure 6: An HTTP request parser implemented in Perl.

and subsequent header lines. A list of regexps concatenates into a single larger regexp, so
each of the regexps bound in phase two will contain three capture groups by the time phase
one ends. Phase three specifies the complete parser logic in a functional style.

The Treep implementation of the parser resolves the problems of the Perl implementation.
The declarative style permits a concise, high-level description of the program logic separate
from the details of the tokenizer, which eliminates the need for temporary variables and
explicit input stack management. Additionally, Treep’s rule-based syntax and semantics
naturally maintain tight scoping of pattern variables without extra code.

Further, the Treep interpreter does not perform opaque optimizations at run time. Treep
does not manage a significant amount of memory implicitly—the loaded program is the
heap—so the memory consumed by a program is evident in its code. Moreover, all of
the programmer-defined optimizations—in this case, the rules of phases one and two—are
defined in native Treep code. Finally, Treep provides a consistent syntax for deconstructing
all primitive terms, including strings.

Regular languages like the HTTP request format are ubiquitous in modern software sys-
tems because they are convenient for driving machine-machine interactions. Further exam-
ples include SMTP headers, web server logs, server configuration files, and user-facing input
scrubbers and validation engines. Regular languages may also be combined to form more
complex languages; for instance, by embedding URL-encoded form data in an HTTP POST
request body. Composing regular language parsers in Treep is convenient and intuitive.
However, sometimes we need more expressive power than regular languages offer, particu-
larly when dealing with human-machine interactions. The remaining examples address this
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Next --> #{\r\n((?:.|\r|\n)*)$}#

|-

(ReqLine --> #{^([^ ]+) ([^ ]+) HTTP /1\.1}# Next)

(Header --> #{^([^:]+): (.+)}# Next)

|-

(parse ReqLine --> head (_method = \1 && _uri = \2) \3)

(parse _ --> reject "bad request ")

(head _req Header --> head (req && #<"_" \1># = \2) \3)

(head _req Next --> req && _body = \1)

(head _ _ --> reject "bad header ")

Figure 7: The HTTP request parser implemented in Treep.

concern.

2.2 Parenthesized expressions

The calculator from Figure 3 is of limited use because the order of operations is fixed by
the interpreter. A common strategy for overcoming this limitation is to introduce balanced
parentheses to denote sub-expression boundaries. Deciding whether parentheses are balanced
is simply a matter of keeping count, but regular expressions will not do this for us.

Figure 8 gives a recognizer for the language of balanced parentheses in Treep. Phase
one defines the interface to the host platform along with a rule for defining literal token
consumers. Phase two defines the tokenizer, and phase three implements the core logic. The
loop rules examine the input and adjust the depth variable d. If the final value of d is 0,
the input is accepted. For any other final value of d, or if d ever becomes negative, the input
is rejected. The recognize rule initializes the loop. Figure 19 shows the derivation of this
program.

Figure 9 shows how an equivalent parser can be implemented in Haskell. The functions
are similar to their Treep counterparts, except that the loop function decomposes the input
as a character list instead of by tokenizing with regular expressions. In this small example,
the Haskell program is more compact and probably more efficient than the Treep version
because it does not use regular expressions. We also benefit from the presence of the static
type checker.

The balanced parentheses recognizers are simple because the amount of state—a single
counter—is minimal. Adding parenthesized sub-expressions to our arithmetic expression
parser will require significantly more complex state. Below is a common formulation of the
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(_a ++ --> ##+ a 1)

(_a -- --> ##- a 1)

(_a > _b --> ##> a b)

(Literal _c --> #{^ *}# c #{ *(.*)$}#)

|-

(LP --> Literal "(")

(RP --> Literal ")")

|-

(recognize _input --> loop input 0)

(loop LP _d --> loop \1 (d ++))

(loop RP _d | d > 0 --> loop \1 (d --))

(loop "" 0 --> accept)

(loop _ _ --> reject)

|-

recognize "() (())"

Figure 8: A balanced parentheses recognizer implemented in Treep.

recognize :: String -> Bool

recognize input = loop input 0

loop :: String -> Int -> Bool

loop "" d = d == 0

loop (c:cs) d = case c of

’ ’ -> loop cs d

’(’ -> loop cs $ d + 1

’)’ | d > 0 -> loop cs $ d - 1

_ -> False

main = putStrLn $ show $ recognize "() (())"

Figure 9: The balanced parentheses recognizer implemented in Haskell.
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desired language as an unambiguous context-free grammar (CFG) with left recursion, which
we use as a reference for building a simple shift-reduce parser.

exp ::= exp + fac
∣∣∣ fac

fac ::= fac * trm
∣∣∣ trm

trm ::= num
∣∣∣ ( exp )

We can convert this CFG systematically into an equivalent two-state pushdown automata
(PDA) by, e.g., Sipser [Sip12]. One state corresponds to an active main loop and the other
to acceptance of the input. The parser state is the PDA stack. Each transition from the
loop state to itself either shifts an element onto the stack or reduces some elements at the
top of the stack.

Figure 10 shows the PDA-based parser implemented as a Treep program. The rule in
phase one is copied directly from the recognizer, as are the first two rules of phase two. The
next three rules define token consumers for the operators and numbers. The final three rules
of phase two define a small DSL for specifying our parser logic. The first rule defines a three-
argument stack-shifting abstraction named shift. The first argument is a token consumer,
and the second argument specifies which backreference contains the rest of the input when
the token consumer succeeds. The third argument defines the term to shift. The final two
rules of phase two define an overloaded “reduce” operator (::=) that matches all arguments
but the last against the elements at the top of the stack and, on success, replaces them with
the term defined by the last argument. Figure 20 gives the derivation of this program.

This program is interesting in a number of ways. In three rules, we were able to implement
a DSL for building basic shift-reduce parsers. The program is substantially more readable
than without it, and the custom syntax emphasizes the relationship between the original
CFG and the final code. The order of the “reduce” rules is precisely the reverse of the
CFG productions. This custom syntax is actually a by-product of a series of standard agile
prototype-refactor cycles, obtained by implementing parts of the main loop directly and
capturing the patterns in the code as they emerged.

However, the implementation has at least one major drawback. Among the shift rules,
order is completely irrelevant for Num and LP but supremely relevant for the others. The
reason is evident in the CFG, but only after careful consideration. Some of the productions
“reduce” by re-tagging the top of the stack with an equivalent but lower-precedence pro-
duction as a catch-all. For instance, the rule above shift Plus re-tags a fac as an exp if
the preceding rule fails to “reduce” the top of the stack to an addition operation. If the
shift Plus rule is moved one line up, the parser will always shift the + before the left
part can be tagged as an exp and thus will fail on any input with an addition. This kind
of subtlety complicates the implementation of more substantial parsers. We leave this issue
open for future work.
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Literal _c --> #{^ *}# c #{ *(.*)$}#

|-

(LP --> Literal "(")

(RP --> Literal ")")

(Plus --> Literal "+")

(Times --> Literal "*")

(Num --> #{^ *([0 -9]+)(.*)$}#)

(shift _rx _i _R --> loop rx _s --> loop i (R s))

(_L ::= _R --> loop _i (L _s) --> loop i (R s))

(_N _M _L ::= _R --> loop _i (L (M (N _s))) --> loop i (R s))

|-

(parse _input --> loop input $)

((num _n) ::= (trm n))

([ (exp _e) ] ::= (trm e))

(shift Num \2 (num #<\1>#))

((fac _f) * (trm _t) ::= (fac (f * t)))

((trm _t) ::= (fac t))

(shift Times \1 *)

((exp _e) + (fac _f) ::= (exp (e + f)))

((fac _f) ::= (exp f))

(shift Plus \1 +)

(shift LP \1 [)

(shift RP \1 ])

(loop "" ((exp _e) $) --> accept e)

(loop _ _ --> reject)

|-

parse "1 * (2 + 3)"

Figure 10: A parenthesized arithmetic expression parser implemented in Treep.
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2.3 A Forth interpreter

Then final example in this section demonstrates a rudimentary Forth interpreter implemented
in Treep. Forth is a stack-based, extensible, Turing complete programming language with
an extremely simple syntax [Pel11].

Figure 11 shows a Forth interpreter implemented as a Treep program. Phases one and
two define the lexer in the style of previous examples. Phase three defines the Forth evaluator
as a multi-stepper, where each step consumes a single element from the head of the input.
The step rules implement five kinds of statements and a stack dumper for debugging invalid
inputs. Evaluation ends when the input is exhausted. The final phase runs the evaluator on
a Forth program that defines a function add-two and then applies it to the number 9. The
program prints to the console: 9 + 2 = 11.

Each step rule looks for a specific form at the head of the input. In Forth jargon,
the first two rule handle words defined in the dictionary. The b rule defines four built-
in words: addition, multiplication, duplication, and a destructive print statement. This
implementation keeps built-in words separate from user-defined words, but handles user-
defined words first so that built-ins can be redefined by user code. The third step rule
prints a string to the console. The fourth step rule pushes a number onto the stack, the
fifth handles new word definitions, and the sixth detects the end of input.

The first dump rule uses a print term to serialize an element of the stack. A print term is
a list surrounded by special square brackets, #[ and ]#. When the list inside a parse term
reaches a normal form, the built-in printer consumes it and replaces the print term with the
result.

3 Implementation

Treep is implemented in Haskell 2010 and compiled with GHC version 7.8.4. The built-
in parser is generated by Alex and Happy. Additional dependencies included libraries for
regular expressions and some monad transformers.

The prototype is provided as a Cabal source package that may be built and installed
by running cabal install from the root directory of the unpacked tarball. This will build
and install an executable file named treep. Executing this command with no command-line
arguments starts an interactive REPL. To enable evaluation traces at the command line, add
the -t switch. To evaluate a file from the command line, specify the path to the file as the
final argument. The source package contains several programs, including all of the programs
in this document, in the examples directory. All errors are fatal, including run-time parse
failures and failed pragma calls.

The parser recognizes four kinds of symbol.

• A number is a sequence of digits, prefixed by a hyphen (-) if negative. Leading zeros
are ignored.

• A word is a sequence of alphanumeric characters. Words may contain modern Greek
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Next --> #{(?: (.*))?$}#

|-

(Wrd --> #{^([^ ]+)}# Next)

(Num --> #{^([0 -9]+)}# Next)

(Str --> #{^\. ’ ([^ ’]*) ’}# Next)

(Def --> #{^: ([^ ]+) ([^;]+ );}# Next)

|-

(b --> ("+" --> $ ($ (_A (_B _s)) --> (##+ A B) s))

("*" --> $ ($ (_A (_B _s)) --> (##* A B) s))

("dup" --> $ ($ (_A _s) --> A (A s)))

("." --> $ ($ (_A _s) | ##print (" " #[A]#) --> s)))

(step Wrd _s _d | $ _f = (d ||- \1) --> step (f \2) s d)

(step Wrd _s _d | $ _f = (b ||- \1) --> step \2 (f ||- $ s) d)

(step Str _s _d | ##print (" " \1) --> step \2 s d)

(step Num _s _d --> step \2 (#<\1># s) d)

(step Def _s _d --> step \3 s (d (\1 --> $ \2)))

(step "" _ _ --> )

((puts _A --> ##print (A "\n"))

(mark _A --> ">>>" A "<<<")

||-

(step Wrd _s _ --> puts ((dump s) " " (mark \1) " " \2))

(step _src _s _ --> puts ((dump s) " " src (mark ""))))

(dump (_A _s) --> (dump s) " " #[A]#)

(dump () --> "")

(eval _src --> step src () ())

|-

eval ": add -two dup . .’ + 2 =’ 2 + . ; 9 add -two"

Figure 11: A forth interpreter implemented in Treep.
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##+ ##* ##- ##div

##mod ##> ##< ##>=

##<= ##file ##load ##print

Table 1: Pragmas supported by the prototype interpreter.

letters (A-Ωα-ω) and underscores (_), may have any number of trailing apostrophes
(’), and must not start with a digit or an underscore.

• An operator is a sequence of punctuation characters, or non-word characters in the
ASCII hex code range 20-7E except for the sharp sign (#).

• A special is like any other symbol, but either starts or ends with a sharp sign.

Symbol classification is purely a pragmatic matter. However, the prototype recognizes
integers as a special kind of symbol to simplify interaction with the Haskell run time.

To facilitate program debugging, the built-in printer serializes maps as if they were simple
rule sets. Maps are printed with surrounding special braces annotated with an M to make
them visually distinct from actual rule sets.

#M{(x --> 5) (y --> 4)}#

The built-in parser does not recognize this notation.
Table 1 shows the pragmas recognized by the prototype. The first nine correspond to

the Haskell operator of the same name and expect a pair of integer arguments. The numeric
operators return an integer and the inequality tests return either #f or the empty map.
The ##file pragma expects a single string argument containing a file path and returns the
contents of the file as a string. The ##load pragma is similar, but also parses the file. In
other words, ##load "program.trp" is equivalent to #< ##file "program.trp" >#. The
##print pragma expects a single string argument, which it writes to the standard output,
and returns the empty map.

4 Formalism

The behavior of Treep programs is determined by the formal semantics, specified here as
structural operational semantics in a small-step style, over terms of the formal syntax in
Figure 12. The operational semantics occasionally refer to one of the sets of all terms of a
particular form.

A = atoms Z = character sequences Σ = rule sets

X = variables G = guard terms Γ = maps

The formal semantics make liberal use of the following convenient but slightly abusive
notations. Let t be a term in the formal language. We call t a normal form if t makes no
progress with respect to the formal semantics. We may write t ⊥ to indicate t is a normal
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a ::= x symbol
| v(x) variable
| � wildcard
| z regexp/string
| ϕ pragma
| false boolean
| σ rule set
| γ map

t ::= a atom
| [t]I parse
| [t]O print
| t|t guard
| t→ t rule
| t · · · t list
| t |− t phase
| t ||− t force
| t ∼= t match
| ¬t negation
| t ∧ t conjunction
| t ∨ t disjunction

Figure 12: The formal syntax of Treep.

form. Alternatively, we may write v to indicate a normal form whenever the following is
true.

∃ t such that v = t and t ⊥

The operational semantics rely heavily on these notations to indicate terms in normal form.

4.1 Notation

The following notations assist in defining the formal semantics of the language. Denote by ∗

the reflexive-transitive closure of the small-step relation, and define t ⇓ t′ the sub-evaluation
of t to t′ as follows.

t ⇓ t′ ⇐⇒ ∃ t′′ such that t ∗ t′′ and t′′  ⊥

Denote by φ(ϕ, v1 · · · vn) a call to the host platform identified by pragma ϕ, with arguments
v1, . . . , vn. Denote by t1 ⊕ t2 the concatenation of terms t1 and t2, defined as follows,

t1 ⊕ t2 =

{
t1 ∪ t2 {t1, t2} ⊂ Σ or {t1, t2} ⊂ Γ

t1t2 {t1, t2} ⊂ Z

where z1z2 is the regexp formed by concatenating the bodies of regexps z1 and z2. Denote
by t1 ∼= t2 = γ a match between pattern t1 and term t2 that produces the map γ. The match
relation is defined as follows,

t1 ∼= t2 =


γ {t1, t2} ⊂ Z and µ(z1, z2) = γ

{x 7→ t2} t1 = v(x)

∅ t1 = �
∅ {t1, t2} ⊂ A and t1 = t2
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where µ(z1, z2) = γ if regexp z1 matches string z2 and captures bindings γ. Denote by γ(α; t)
the substitution in term t of the symbols bound by γ that are not also elements of α ⊂ X ,
defined as follows,

γ(α; t) =

{
t′ t = x /∈ α and x 7→ t′ ∈ γ
γ(α; t1)→ γ(α ∪ vars(t1); t2) t = t1 → t2

where vars(t) = {variables in t}. Denote by σ(t) the rewriting by rule set σ of term t, defined
by σ(t) = t′ ⇐⇒ one of the conditions below is satisfied.

• ∃ t1 → t2 ∈ σ such that t1 /∈ G and t1 ∼= t = γ and γ(t2) = t′

• ∃ t1|t2 → t3 ∈ σ such that t1 ∼= t = γ1 and γ1(t2) = t′2 and σ |− t′2 ⇓ γ2 and γ1⊕γ2 = γ3
and γ3(t3) = t′

• ∃ t1|t2 → t3 ∈ σ such that t1 ∼= t = γ1 and γ1(t2) = t′2 and σ |− t′2 ⇓ t′′2 and
t′′2 /∈ Γ ∪ {false} and γ1(t3) = t′

In the first case, variables captured by an unguarded rule pattern will be bound in the target.
In the other two cases, any variables captured by a guard will also be bound in the target.

Finally, the semantics use three helper functions: parse(z) applies the built-in parser to
string z, print(t) applies the built-in printer to term t, and compile(t) verifies that t is a rule
set.

4.2 Evaluation

The evaluation semantics are partitioned into two distinct parts: expansion and reduction.
These names do not imply a deep or meaningful connection to the particulars of any other
language. Intuitively, the separation of expansion and reduction is to protect rules, guards,
and print terms from premature reduction.

Figure 13 details the core evaluation semantics. To summarize, evaluation of a given
term proceeds as follows. First, try to expand the term. If expansion fails, try to reduce the
term. If reduction fails and the term is a phase and its left part is a rule set, the current
phase ends and evaluation of the term as the next phase begins. Otherwise, the current
phase ends and the term is the final result.

4.2.1 Expansion

All built-in parsing, concatenation, pragma calls, sub-evaluations, and rewrites occur during
expansion. Of these, parsing is always first and rewriting is always last. Expansion is defined
recursively on the structure of all non-atomic terms. Consequently, rewriting occurs depth-
first from left to right. Figure 14 details the non-recursive parts of the expansion semantics.
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σ |− t E σ |− t′

σ |− t σ |− t′
σ |− t E ⊥ σ |− t R σ |− t′

σ |− t σ |− t′
compile(v1) = σ1

σ |− v1 |− v2  σ1 |− v2

σ |− v  v

Figure 13: The core evaluation semantics.

parse(z) = t

σ |− [z]I  E σ |− t

t /∈ Z σ |− t E σ |− t′

σ |− [t]I  E σ |− [t′]I

v1 ⊕ v2 = v′

σ |− v1 v2 t3 · · · tn  E σ |− v′ t3 · · · tn
φ(ϕ1, v2 · · · vn) = t′

σ |− ϕ1 v2 · · · vn  E σ |− t′

compile(t1) = σ1 σ1 |− t2 ⇓ t′

σ |− t1 ||− t2  E σ |− t′
σ(t) = t′

σ |− t E σ |− t′

Figure 14: The expansion semantics.

4.2.2 Reduction

All explicit substitutions, map constructions, Boolean-like operations, and built-in printing
occur during reduction. Of these, printing is always last. Reduction is defined recursively on
all non-atomic terms except for rules, forced phases, and the patterns of map constructor.
Figure 15 details the non-recursive parts of the reduction semantics.

5 Future work and conclusions

Treep attempts to balance the needs of implementers and users of domain-specific languages.
The examples of Section 2 show that, for regular languages, we have succeeded. However,
the examples also demonstrate that the Treep design requires more attention before we can
say the same for more expressive languages. Specifically, we would like to eliminate the
subtleties that arise when converting context-free grammars into shift-reduce parsers. To
this end, we plan to explore new ways to extend pattern matching. For example, Treep can
not yet deconstruct lists of variable or unknown length—a basic feature of other list-oriented
meta-languages such as Lisp or Scheme. Similarly, but less critically, we would like to tune
the syntax of Treep constructs to reduce the need for parentheses, perhaps by introducing
constructs like Haskell’s dollar-sign and colon operators, or by allowing parser hints through
indentation. For real-world applications, this level of sophisticated syntax may be worth
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γ(∅; t) = t′

σ |− γ |− t R σ |− t′
v1 ∼= v2 = γ

σ |− v1 ∼= v2  R σ |− γ

v1��∼=v2
σ |− v1 ∼= v2  R σ |− false

σ |− ¬false R σ |− ∅
v 6= false

σ |− ¬v  R σ |− false σ |− false ∧ t R σ |− false

σ |− v ∧ false R σ |− false

v1 ⊕ v2 = v′

σ |− v1 ∧ v2  R σ |− v′
v1 6= false v1��⊕v2
σ |− v1 ∧ v2  R σ |− v2

σ |− false ∨ t R σ |− t

v 6= false

σ |− v ∨ t R σ |− v

print(v) = z

σ |− [v]O  R σ |− z

Figure 15: The reduction semantics.

the effort. We are also interested in ways to extend the design to enhance modularity.
For example, there is no way to prevent arbitrary code from using the Forth interpreter’s
step rules directly, which can lead to brittleness. We would also like to explore support for
socket-based IO and regexp matching for potentially infinite character streams.

Because this experiment focuses on the pragmatic consequences of extreme syntactic
flexibility on an extensible language design, we address neither theoretical aspects of the
design nor performance of the implementation. An obvious question of theoretical interest
is whether Treep programs can be proven sound statically, perhaps with a mechanism like
the Knuth-Bendix convergence test [KB83]. Similarly, Treep’s explicit phasing and rewriting
constructs make for a unique coding experience that encourages the growth of concise and
optimized code organically, and we expect a basic collection of program analysis tools could
enable in-editor detection and exploitation of usage patterns as they emerge.

With respect to run-time performance, we have no benchmarks for the prototype. We can
safely assume that Treep performance is at least an order of magnitude worse than a mature
language like Perl or Haskell. The prototype rewriting engine naively iterates through all
the rules in a rule set because the “compile” helper merely detects rule sets without doing
any actual compiling! Instead, we would like to compile active rule sets into automata that
avoid spurious re-checking of shared pattern prefixes. For example, we should be able to
check if the first element of a list is the symbol step once and, if not, ignore all of the active
step rules. We would also like to integrate regexps into these automata, and extend them
with named capture groups.

In conclusion, Treep offers a powerful and convenient alternative to Perl for regular
language processing, but falls short of Haskell when processing more complex languages.
Still, the process of growing efficient code in Treep can lead to valuable insights into the
design of domain-specific languages, independent of the language used to implement the
design.
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A Program traces

"1 + 2 * 3 + 4 * 5"

"1 + 2 * 3" + "4 * 5"

("1" + "2 * 3") + "4 * 5"

(#<"1"># + "2 * 3") + "4 * 5"

(1 + "2 * 3") + "4 * 5"

(1 + ("2" * "3")) + "4 * 5"

(1 + (#<"2"># * "3")) + "4 * 5"

(1 + (2 * "3")) + "4 * 5"

(1 + (2 * #<"3" >#)) + "4 * 5"

(1 + (2 * 3)) + "4 * 5"

(1 + (2 * 3)) + ("4" * "5")

(1 + (2 * 3)) + (#<"4"># * "5")

(1 + (2 * 3)) + (4 * "5")

(1 + (2 * 3)) + (4 * #<"5">#)

(1 + (2 * 3)) + (4 * 5)

Figure 16: Parsing a regular arithmetic expression.
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2 ^ 7

##* 2 (2 ^ (##- 7 1))

##* 2 (2 ^ 6)

##* 2 ((2 ^ (## div 6 2)) ^ 2)

##* 2 ((2 ^ 3) ^ 2)

##* 2 ((##* 2 (2 ^ (##- 3 1))) ^ 2)

##* 2 ((##* 2 (2 ^ 2)) ^ 2)

##* 2 ((##* 2 (##* 2 2)) ^ 2)

##* 2 ((##* 2 4) ^ 2)

##* 2 (8 ^ 2)

##* 2 (##* 8 8)

##* 2 64

128

Figure 17: Evaluating an integer exponent.

_a fifth --> a ^ 5

_a fifth --> ##* a (a ^ (##- 5 1))

_a fifth --> ##* a (a ^ 4)

_a fifth --> ##* a ((a ^ (## div 4 2)) ^ 2)

_a fifth --> ##* a ((a ^ 2) ^ 2)

_a fifth --> ##* a ((##* a a) ^ 2)

_a fifth --> ##* a (##* (##* a a) (##* a a))

Figure 18: Specializing a quintic integer power function.
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recognize "() (())"

loop "() (())" 0

loop ") (())" (##+ 0 1)

loop ") (())" 1

loop "(())" (##- 1 1)

loop "(())" 0

loop "())" (##+ 0 1)

loop "())" 1

loop "))" (##+ 1 1)

loop "))" 2

loop ")" (##- 2 1)

loop ")" 1

loop "" (##- 1 1)

loop "" 0

accept

Figure 19: Recognizing balanced parentheses.
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parse "1 * (2 + 3)"

loop "1 * (2 + 3)" $
loop " * (2 + 3)" ((num #<"1">#) $)
loop " * (2 + 3)" ((num 1) $)
loop " * (2 + 3)" ((trm 1) $)
loop " * (2 + 3)" ((fac 1) $)
loop "(2 + 3)" (* ((fac 1) $))
loop "2 + 3)" ([ (* ((fac 1) $)))
loop " + 3)" ((num #<"2">#) ([ (* ((fac 1) $))))
loop " + 3)" ((num 2) ([ (* ((fac 1) $))))
loop " + 3)" ((trm 2) ([ (* ((fac 1) $))))
loop " + 3)" ((fac 2) ([ (* ((fac 1) $))))
loop " + 3)" ((exp 2) ([ (* ((fac 1) $))))
loop "3)" (+ ((exp 2) ([ (* ((fac 1) $)))))
loop ")" ((num #<"3">#) (+ ((exp 2) ([ (* ((fac 1) $))))))
loop ")" ((num 3) (+ ((exp 2) ([ (* ((fac 1) $))))))
loop ")" ((trm 3) (+ ((exp 2) ([ (* ((fac 1) $))))))
loop ")" ((fac 3) (+ ((exp 2) ([ (* ((fac 1) $))))))
loop ")" ((exp (2 + 3)) ([ (* ((fac 1) $))))
loop "" (] ((exp (2 + 3)) ([ (* ((fac 1) $)))))
loop "" ((trm (2 + 3)) (* ((fac 1) $)))
loop "" ((fac (1 * (2 + 3))) $)
loop "" ((exp (1 * (2 + 3))) $)
accept (1 * (2 + 3))

Figure 20: Parsing a parenthesized arithmetic expression.
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