
Procedural Graph-store Processing

Eric Griffis
University of California, Los Angeles

egriffis@cs.ucla.edu

Abstract
Graph-store Processing (GSP) is a novel programming
paradigm for managing, sharing, and computing on arbitrarily
structured and possibly distributed collections of digital infor-
mation. As an informal introduction to basic GSP concepts,
I present pGrasp, an experimental language for specifying
computations as procedures within the context of a graph-
store—a directed property graph over variable contexts. In
this report, I outline the need for a paradigm like GSP. I
introduce basic GSP concepts and relate them to pGrasp
constructs. I produce a series of pGrasp programs which
culminates in a simple distributed task queue with interesting
properties. I provide a formal specification for pGrasp, along
with an overview of a prototype implementation. Finally, I
discuss in detail the relationship between pGrasp and GSP,
and describe the next steps toward a practical GSP platform.

1. Introduction
We have, generally speaking, many tools at our disposal
for solving a given problem in software. Despite the fact
that all Turing-complete programming languages are equally
expressive, each language tends to excel in some aspects at
the expense others. Datalog, a logic programming language
that models computations as queries over sets of related terms,
solves problems in deductive reasoning elegantly but has
some trouble with evolving state. C, an imperative language,
handles mutable state well but can be difficult to reason about.
Indeed, a language perfect for every situation would obviate
the need for all others.

Thus, a useful programming language inevitably fills a
niche—a setting in which particular kinds of problems can be
solved naturally, with minimal complication. This reasoning
applies to programming paradigms as well. Object-oriented
programming (OOP) decomposes large problems into inde-
pendent components to maximize productivity. Symbolic
programming treats code as data to maximize flexibility.
Imperative programming operates close to the underlying
hardware platform to maximize performance.

How about for Web information systems [6], or other forms of
distributed information systems? What kinds of processes can
we execute on loosely structure information repositories like
the Web, and how should we structure such efforts? What are
the common properties of distributed, ad-hoc information

systems? Can we exploit these commonalities to reduce
complexity in distributed systems? To summarize these issues,
I pose the following question.

How can we most naturally manage, share, and compute on
loosely structured digital information?

With respect to existing tools and methods, I see no clear
answer to this question. For the Web, we might argue that the
current trajectory of Web technologies is acceptable and will
continue to improve with time. The evidence is, however, in
direct opposition to this argument. The current state of Web
software development is quite complex. Indeed, we must
maintain an entire software “stack” of distinct products in
order to enact a presence on the modern Web, and plans
for the Semantic Web promise to inject an entirely new
sub-stack into the existing model. Consider the volume of
distinct configuration, description, and general programming
languages involved in the following scenario.

To share information on the modern Web, we require at min-
imum a Web server and some HTML pages. To adjust ele-
ments of presentation, we use Cascading Stylesheets (CSS).
We also use JavaScript for general computations like looping,
interactive event handling, and back-end communications
via AJAX libraries that transmit messages as JSON or XML
documents. If we intend to offer proprietary or complex ser-
vices, we integrate a server-side application development
framework like PHP into our Web server. To manage struc-
tured data, we incorporate an SQL database or some form
of NoSQL alternative. If we intend our service to become
large, we might implement our applications on the SOAP
messaging framework. If growth occurs unexpectedly, we
might choose CORBA, an IDL-based middleware, instead.

No single technology in this stack is designed to simultane-
ously manage, share, and compute on a structured informa-
tion repository. Moreover, each component presents a distinct
perspective on the nature of the system as a whole. Disparate
languages and priorities lead to duplicated effort and compli-
cated work-arounds. Furthermore, the Web is but one form
of distributed information system. We also have, for example,
e-mail, video chat, and instant messaging systems, not to
mention the plethora of emerging systems unique to mobile
platforms. Each form poses different goals and challenges:

1 2014/1/10

push versus pull, stream versus block, reliability versus per-
formance, and so on.

Despite the profusion of concepts and languages throughout
the stack, we can observe several common elements. Virtu-
ally all back-end processes communicate via tree structures,
ranging in complexity from flat key-value headers to com-
plete XML or JSON documents. Each process in the sys-
tem encodes, decodes, consumes, transforms, and produces
structured messages to affect its contribution to the overall
behavior of the system. These messages represent structures
local to each process, requests to act on these local structures,
or responses to such requests.

There are clear opportunities to simplify the stack. Efficient
message passing and processing are crucial elements of any
distributed software system. Every layer of the stack stands
to benefit from a natural setting in which to inspect and
operate on messages directly, without spurious translations
between representations. Furthermore, each implementation
may depend on messaging internally, in the form of OOP
method calls. To address this clear opportunity, I propose the
graph-store.

1.1 Graph-store Processing

A graph-store is a graph-based data structure, designed specif-
ically to manage, share, and compute on arbitrarily structured
collections of information. The nodes of a graph-store are
similar to C structs or OOP objects. A graph-store node dif-
fers from a struct in that it can be used directly as a context in
which to evaluate a program. It differs from an object in that
we can can choose dynamically in which node to evaluate
each sub-program. In other words, a graph-store node is like
an object with methods that affect the internal state of other
objects.

This arrangement flagrantly violates the principle of encap-
sulation. As a principled approach to software construction
under such conditions, I propose the Graph-store Processing
(GSP) paradigm. GSP appeals to graph rewriting [10, 11]
as a basis for structuring and analyzing large programs with
formal methods similar to functional programming, but in
total absence of closed-world, top-down notions of modu-
larity such as objects or functions—static barriers through
which information passes according to code producers. In-
stead, I adopt an open-world, bottom-up approach, leveraging
concepts such as functional pattern matching [7] and multi-
staged programming (MSP) [13]—tools for code consumers
to inspect and affect sub-program behavior dynamically. GSP
stands apart from previous work with graph rewriting [1, 5]
in its use of staging as the primary means of abstraction and
its emphasis on simple sharing constructs.

GSP strikes a balance between the symbolic and functional
paradigms. Specifically, GSP comprises a novel combination
of staged evaluation and syntactic pattern matching. The
result is a complete inversion of the concept of modularity. In

a modular system, we attach names to code—each component
is a black box that distills arguments into return values. In a
GSP system, we attach names to data—each component is an
arbitrarily complex message, in the object-oriented sense [4],
that describes a computation to be carried out though a series
of rewrites.

In an imperative language like Java, the methods of an object
describe how particular tasks are carried out as sequences of
instructions that affect its internal state. Object boundaries
insulate internal states so methods can not rely on transient
external details or lead otherwise to inconsistencies. A GSP
language specifies what a solution to a particular problem is
in a declarative style. A GSP node consumes a sub-program,
alters or acts on the parts that it understands, and passes the
modified sub-program on as its result, possibly for further
modification by other nodes—the sub-program is the argu-
ment, internal state, and return value.

This is not to say that modularity is impossible in a GSP
system, just that modularity is extremely difficult to simulate
within an individual graph-store and merely undesirable in
general. In a distributed setting where local processes operate
within distinct graph-stores, the graph-stores are de-facto
modules, if only for the underlying physical boundaries. GSP
defeats this limitation elegantly by prescribing a primitive
node transmission mechanism.

My decision to abandon modularity might seem absurd at
first, but the rewrite model of computation compensates
amply by appealing to our extra-computational intuition;
it is, for example, naturally concurrent. According to José
Meseguer [8],

The idea of concurrent rewriting is very simple. It
is the idea of equational simplification that we are all
familiar with from our secondary school days, plus
the obvious remark that we can do many of those
simplifications independently, i.e., in parallel.

This excerpt highlights the peculiar nature of rewriting,
about which reasoning leads typically from a simple premise
directly to a desirable property. This quality allows us to
express and compose a broad range of behaviors naturally in
a bottom-up fashion, as the following comparison illustrates.

To implement matrices in a modular language without native
support, we write a function library that constructs and
operates on native representations of matrix data. Before
we can use this library, we must understand its API. If
the language contains meta-programming features, we can
simplify the notation with additional work. Given two distinct
matrix libraries, we either choose one statically or produce a
compatibility layer that encapsulates our dynamic selection
logic.

In a modular setting, we build programs by selecting imple-
mentations.

2 2014/1/10

To implement matrices in a GSP language, we specify a set
of rules that rewrite operations over matrices in an intuitive
notation into, say, matrices of operations over scalars. We use
the library by applying its rules repeatedly and recursively
until no further rewrites are possible. Given an alternative im-
plementation with identical notation, we choose one statically
or dynamically and have no need for a compatibility layer. If
the alternative follows a different notation, our compatibility
layer contains only rules to map between notations.

In a graph-store setting, we build programs by selecting
notations.

This report proceeds as follows. Section 2 describes the
pGrasp programming language and its core constructs. Sec-
tion 3 introduces pGrasp programming via three example
programming sessions. From core constructs, I implement
lists and queues. From these structures, I implement a net-
worked queue management API for community resource
pooling. Section 4 specifies the syntax and semantics of the
pGrasp language formally, followed by details in section 5 of
the prototype implementation that informed the formal design
process. Section 6 briefly discusses discrepancies between
pGrasp and GSP. Section 7 concludes with a summary of
possible next steps for the GSP project.

2. The pGrasp Language
pGrasp is a procedural programming language designed to
highlight some core principles of GSP, but the pGrasp lan-
guage offers neither staged evaluation nor functional pattern
matching. It is a proof of concept which favors familiar con-
structs over innovative design. I work around its deficiencies
with convenience constructs and conventions borrowed from
low-level languages. The language, nevertheless, is useful
and admits compact solutions to real problems.

A pGrasp program constructs and manages a graph-store, a
labeled, directed property graph that exhibits index-free adja-
cency of nodes, where each node is a distinct variable name
space. pGrasp provides a variety of features, many of which
are familiar. A pGrasp program is a semicolon-delimited se-
quence of statements. We can store and recall variables by
name. We have looping and branching. We can capture and
apply sub-programs as procedures, and interact with external
resources via opaque descriptors. I use common data types
like booleans, numbers, and strings in a conventional syntax.
For slightly more detail, see the formal syntax specification
in section 4.1.

Program evalation progresses from left to right and top to bot-
tom. I use parentheses (resp., braces) to denote explicit alter-
native groupings or orders of evaluation of expressions (resp.,
statements). Often, I group terms unnecessarily—especially
for procedures, loops, and conditionals—to convey some intu-
ition for constructs with similar behavior in other languages.
Reserved words appear in a proportional sans-serif font, like
this. Identifiers appear in a monospaced serif font, like here.

A variable, node reference, cursor (sec. 2.4), or value appears
as the italicized letter x, n, c, or v, respectively, possibly with
super- or sub-scripts.

2.1 Nodes and References

A graph-store instance contains a heap of nodes and a pair of
special variables. A heap is an indexed set of nodes. A node
is a dictionary, i.e., a set of mappings from variable names
to values. To access a variable, we must obtain a reference
to the node it inhabits. A reference is an opaque token that
identifies a resource. We create a directed link between two
nodes by setting a variable in the parent to a reference of the
child. Occasionally, I conflate the notions of node, reference,
and variable, assuming that the concept at hand is apparent.

A new pGrasp instance contains exactly one non-removable
node called the root. Initially, both special variables reference
the root. The first is immutable and therefore always refer-
ences the root. The second references the current node and
is always mutable. We can access the root and current node
references with keywords root and this.

The following diagram shows the graph-store of a fresh
pGrasp instance. In a graph-store diagram, each node appears
as a box with rounded edges that contains its identifying
reference at top, followed by any variables that do not contain
a node reference. The special references nr and nc identify
the root and current node, respectively. For each stored node
reference, an edge labeled by the variable name points from
parent to child.

ncnr

The next diagram shows the heap of a fresh pGrasp instance.
In a heap diagram, node references appear on the left. The
variables within a node appear to the right of the correspond-
ing reference as a chain of name-value pairs. An empty box
represents a node with no variables.

nr

nc

We have several constructs available for creating new vari-
ables, but the most direct construct is the set statement. To
set the root variable toggle to the boolean value true, write:

set root toggle true;

This statement grows the root node in the heap by one
mapping.

nr

toggle 7→ true

nc

Equivalently, the graph-store root gains a single non-reference
mapping.

3 2014/1/10

ncnr

toggle 7→ true

Graph-store diagrams are also useful for describing abstract
processes as graph rewrite rules, as in the following illustra-
tion of the semantics for the set statement. For convenience,
I assume that the left-hand side of a rule matches any node
with at least the displayed elements, that the right-hand side
of a rule replaces only the elements matched by the left-hand
side, and that we apply rules repeatedly and recursively in
any convenient order until we exhaust all possible matches.

n set n x v
n

x 7→v

We also have many ways to create nodes. The most basic,
however, is the node statement. Because every non-root node
must have a parent, all node construction statements require a
parent node and a variable name in which to store a reference
to the new node. Here is how we create a fresh node and store
its reference in the root variable n.

node root n;

This statement adds a new node to the heap and grows the
root node by one mapping.

nr

n 7→n1 toggle 7→ true

nc

n1

Now that we have a non-root node in the heap, we can set the
current node directly with the in statement.

in n;

This copies the reference stored in root variable n into the
current node special variable.

nr n 7→n1 toggle 7→ true

n1

nc

Here are the rewrite rules for the node and in statements.

n node n x

x

n

n′

nc n in n nc

n

We have two constructs for removing data. To delete a single
variable, use the unset statement. If the deleted variable
contains the sole copy of a node reference, then the referenced
node is removed from the heap. Removing a node deletes all
of its variables implicitly, so a cascade effect is possible. We
can also use the reset statement to delete all of the variables in
a node at once, as in the following sequence which leverages
the cascade effect to empty the graph-store completely.

in root; reset root;

2.2 Paths

We have two forms of variable resolution available, each
corresponding to one of the special variables. Most simply,
a lone variable name resolves to the value it maps to in the
current node, or null if no such mapping exists. We can also
access variables outside the current node via path expressions.
A path is a period-delimited sequence of sub-expressions that
each, except possibly the last, evaluate to a node reference.

pGrasp evaluates the first sub-expression of a path in the
current node. Because pGrasp evaluates each remaining
sub-expression in the node referenced by the previous, all
but possibly the last must evaluate to a node reference. If a
variable does not exist in the appropriate node, the result is
the null value. In conditional test expressions, null and false
are equivalent. To test for a null result directly, use an equality
test expression; e.g., x == null. In its current form, pGrasp
offers no mechanism to differentiate between a variable set to
null and a variable that does not exist, hence setting a variable
to null effectively unsets the variable.

Absolute paths begin with the root keyword.1 A relative
path is any path that is not an absolute path. The following
statement uses an absolute path to set the current node to the
node referenced by root variable n.

in root.n;

Because path sub-expressions are more-or-less arbitrary, we
can embed branch selections directly into the path. The next
example sets the current node to either root.left.target
or root.right.target, depending on the value of variable
root.toggle.

in root.(if toggle then left else right)

.target;

Observe that pGrasp does not resolve path sub-expression
variables in the current node implicitly. If we want to access
a current node variable from within a path sub-expression,
we must specify so explicitly. For instance, the following
statement conditions the path from the previous example on
the current node variable toggle.

in root.(if this.toggle then left else right)

.target;

1 To avoid clutter, I assume that the root variables are always in scope for the
remainder of this document.

4 2014/1/10

2.3 Procedures

Procedure semantics in pGrasp are extremely simple because
the run-time environment does not maintain an implicit call
stack. Instead, a called procedure stores its arguments in the
current node and then replaces the calling statement with its
body. By convention, the caller of a procedure must back up
any important variables in the current node before issuing the
call.

Procedure construction is simple. To create a procedure,
use the proc statement. Take, for example, the following
implementation of a list data structure.

proc root nil () {set this nil? true};
proc root cons (car,cdr) {set this pair? true};

These procedures are essentially data constructors—they
embed a particular structure within the current node. The first
procedure, root.nil, takes no arguments. When called, it sets
the current node variable nil? to true. The second procedure,
root.cons, takes two arguments: car and cdr. When called,
it stores its arguments in the current node and then sets the
current node variable pair? to true. The following rewrite
rules illustrate these semantics.

nc nil()
nc

nil? 7→ true

nc cons(v1, v2)

nc

car 7→v1
cdr 7→v2
cons? 7→ true

For convenience, pGrasp provides four procedure calling
constructs. The call statement is the fundamental procedure
call construct; it simply installs the arguments into the current
node and evaluates the body. The call statement is a useful
tool for exploring alternatives to traditional stack-based
procedure call semantics for, e.g., various forms of distributed
task scheduling [2], parsing ambiguous grammars [12], or
various other cases involving non-determinism that might be
desirable in a distributed setting.

The build statement behaves like the call statement, but
changes the current node variable for the duration of the
call only. This is useful for directing simple constructor-like
procedures, such as nil and cons, into an existing node.
The following example constructs an empty list and stores a
reference to it in the current node variable L

node this L; build L nil ();

Because of the complexity involved in managing the call
stack explicitly, the code and build statements are of limited
utility. For higher-level programming tasks, the remaining
two constructs provide the familiar procedure call semantics.
The new statement behaves like the build statement, but first
installs a fresh current node. The return statement behaves

similarly, but keeps only a single variable from the new node.
In this next example, either statement is equivalent to the
previous example.

new this L nil ();

return this L nil () this;

2.4 I/O

A graph-store instance contains, in addition to its heap
and special variables, a communications dispatch object. A
dispatch object is an indexed set of pairs of byte queues. A
cursor is a reference to a byte queue pair. In order to connect
to external resources like human input devices and network
sockets, we submit a description of the desired resource to
the dispatch object. If the resource is available, the dispatch
object returns a cursor. When the external resource is another
pGrasp instance, we can exchange sub-graph-stores with
simple primitive constructs.

pGrasp mediates all external communications through its
dispatch object. To connect to a resource, use the open state-
ment. This construct takes a node describing the requested
resource, along with a target node and variable name. The
target variable receives a cursor representing a connection to
the resource if successful, or null otherwise. For convenience,
I assume the existence of two universal cursors, accessible by
keywords stdio and stderr. No standard external resource re-
quest format exists yet, so I assume the following constructors
produce valid requests for network sockets.

proc root tcp (host,port) {set this tcp? true};
proc root udp (host,port) {set this udp? true};

We can exchange bytes over an established connection with
the send and recv statements. To terminate an established
connection, use the close statement. The following example
creates a TCP connection to the UCLA public web server,
sends a simple HTTP request, blocks until it receives the
first TCP packet of the HTTP response, then terminates the
connection.

new this addr tcp ("www.ucla.edu", 80);

open addr this ucla;

send ucla "GET / HTTP/1.0\r\n";

recv ucla this response;

close ucla;

When connected to another pGrasp instance, we can exchange
entire sub-graph-stores with the print and read statements.
This simple mechanism extends the principles of GSP into
the realm of distributed computing.

Suppose that pGrasp instance A can request a listening TCP
socket on host/port pair example.com/3636, which will
block until a connection is established. Suppose, further, that
pGrasp instance B has a structured metadata collection rooted
at project.data, which includes any procedures necessary
for managing the collection. Then, the following example

5 2014/1/10

transmits a complete copy of the collection and management
code from A to B.

/* in instance A */

new this addr tcp ("example.com", 3636);

open addr this B;

print B project.data;

close B;

/* in instance B */

new this addr listen ("0.0.0.0", 3636);

open addr this A;

node this project;

read A project data;

close A;

These high-level constructs for structured data interchange
reduce the barriers for entry to a broad range of distributed
computing tasks. Virtually every communication layer of
a modern web software stack fits naturally into this model.
Furthermore, because procedures and evaluation contexts are
just data, computations can be distributed easily across a
network.

3. Example Sessions
3.1 Lists

Suppose we start a pGrasp session that contains only the
aforementioned list constructors, as illustrated in the follow-
ing heap diagram.

nr

cons 7→ϕ2 nil 7→ϕ1

nc

First, create a work space and set it as the current node.

node root work;

in work;

The heap now has the following structure.

nr work 7→n1 cons 7→ϕ2 nil 7→ϕ1

n1

nc

Next, construct an empty list.

new this L nil ();

We now have a reference to an empty list in the current node
variable L.

nr work 7→n1 cons 7→ϕ2 nil 7→ϕ1

n1

L 7→n2

nc

n2 nil? 7→ true

Extend the list by three numbers.

new this L cons (9,L);

new this L cons (8,L);

new this L cons (7,L);

Each new statement overwrites L with a link to a fresh cons
cell. The list appears to grow because the cdr of each new
link receives the old value of L.

nr work 7→n1 cons 7→ϕ2 nil 7→ϕ1

n1

L 7→n5

nc

n2 nil? 7→ true

n3 cons? 7→ true cdr 7→n2 car 7→9

n4 cons? 7→ true cdr 7→n3 car 7→8

n5 cons? 7→ true cdr 7→n4 car 7→7

We can calculate the length of L in an imperative style. First,
initialize a counter and make a working copy of L.

set this N 0;

set this X L;

The current node now has the following structure.

n1

X 7→n5 N 7→0 L 7→n5

nc

Next, write the counting loop.

while (not X.nil?) {

set this N (N + 1);

set this X X.cdr }

Each iteration increments N by one and discards a single link.
After the first iteration, X references the second element of L.

n1

X 7→n4 N 7→1 L 7→n5

nc

After the third iteration, X references the end of L and the
loop terminates.

6 2014/1/10

n1

X 7→n2 N 7→3 L 7→n5

nc

Delete X, as it is no longer useful.

unset this X;

The current node appears as expected.

n1

N 7→3 L 7→n5

nc

The following procedure calculates the length of a list, but in
a functional style. In this case, the call statements implement
tail recursion.

proc root length (xs) {

proc this loop (xs,N) {

when (not xs.nil?)

call loop (xs.cdr,N+1);

};

call loop (xs,0) }

The rewrite rules for this procedure are not so obvious. Since
the call statement essentially applies an arbitrary rewrite rule,
I represent the loop initiation call as a dangling transition
arrow. This notational kludge is an unfortunate consequence
of the tension between modular abstraction (procedures) and
staging (rewrite rules). In a truly non-modular setting, such
artifacts do not arise.

nc n
nil? 7→ true

loop(n, v)
nc

N 7→v
xs 7→n

nc n
cdr 7→v2

loop(n, v)
nc

N 7→v + 1
xs 7→v2

nc length(n)
nc

loop 7→ϕ
xs 7→n

loop(n, 0)

Because pGrasp procedures do not return values in the tra-
ditional sense, each procedure must specify a convention
for identifying its results. Though more sophisticated con-
ventions are possible, I assume that the result is apparent by
inspection. In this case, N contains the result. Since N contains
the only interesting value, we use the return statement when
calling this procedure.

return this M length (L) N;

The return statement sets the call up in a fresh working node,
and the procedure body installs the inner loop immediately
afterward. Then, the first call to loop sets up the counter N.

n6

N 7→0 loop 7→ϕ3 xs 7→n5

nc

The inner loop call increments the counter by one and
discards a single link. After the first recurrence, the current
node appears as follows.

n6

N 7→1 loop 7→ϕ3 xs 7→n4

nc

After the third recurrence, the procedure ends.

n6

N 7→3 loop 7→ϕ3 xs 7→n2

nc

Finally, the caller’s current node variable is restored and the
current node variable M receives a copy of N. We lose the
call’s working node because no other references to it exists.
Figure 1 shows the resulting graph-store. Here is the final
heap.

nr work 7→n1 cons 7→ϕ2 nil 7→ϕ1

n1

M 7→3 N 7→3 L 7→n5

nc

n2 nil? 7→ true

n3 cons? 7→ true cdr 7→n2 car 7→9

n4 cons? 7→ true cdr 7→n3 car 7→8

n5 cons? 7→ true cdr 7→n4 car 7→7

3.2 Queues

Queues are a handy data structure for, among other things,
distributed task scheduling. We can construct queues readily
from pairs of lists [9] according to the banker’s method.
In this method, we call one list the front and the other the
rear. New elements are snoced onto the rear. Whenever the
rear becomes longer than the front, we append the front to
the reversed rear. Thus, we need list reverse and append
operations.

The following implementation of the reverse operation simply
copies the elements of list xs onto a new list ys in a tail
recursive style. Because I use call to initiate the inner loop
procedure, I do not need to give ys as an argument to loop.
Despite the apparent lexical scoping of ys, pGrasp enforces
no single variable scoping policy beyond the nature of nodes
and paths. We might say that pGrasp encourages a policy of
selective dynamic scope.

7 2014/1/10

work

L cdr cdr cdr
nr

cons 7→ϕ2

nil 7→ϕ1

n1

M 7→3
N 7→3

n5

cons? 7→ true
car 7→7

n4

cons? 7→ true
car 7→8

n3

cons? 7→ true
car 7→9

n2

nil? 7→ true

nc

Figure 1: A list structure.

proc root reverse (xs) {

new this ys nil ();

proc this loop (xs) {

when (not xs.nil?) {

new this ys cons (xs.car,ys);

call loop (xs.cdr) } };

call loop (xs) }

We also need a list append operation. The next procedure
first copies the reversed elements of ys, followed by the
reversed elements of xs, onto a new list zs. An imperative
style produces the most compact code for this example.

proc root append (xs,ys) {

new this zs nil ();

return this ys reverse (ys) ys;

return this xs reverse (xs) ys;

while (not ys.nil?) {

new this zs cons (ys.car,zs);

set this ys ys.cdr };

while (not xs.nil?) {

new this zs cons (xs.car,zs);

set this xs xs.cdr } };

We are ready to implement the queue. The following con-
structor takes no arguments and constructs two lists with
corresponding length counters. It also installs two helper
procedures like OOP methods. The first, snoc, conses an
element onto the rear of the queue and then calls the second,
cleanup, to enforce the constraint on member list lengths.

proc root queue () {

new this F nil ();

new this R nil ();

set this lenF 0;

set this lenR 0;

proc this snoc (x) {

new this R cons (x,R);

set this R (R + 1);

call cleanup () } };

proc this cleanup () {

when (lenR > lenF) {

return this R reverse (R) ys;

return this F append (F,R) zs;

new this R nil ();

set this lenF (lenF + lenR);

set this lenR 0 } }

Because the effects of snoc and cleanup are confined
entirely to the queue instance they inhabit, the object-oriented
style admits the simplest code. The same is not true for the
remaining mutators because they return some result to the
caller. The head procedure copies the element at the front of
queue q into the variable x so the caller can fetch it with a
return statement. If q is empty, x is null.

proc root head (q) {

when (not q.F.nil?)

set this x q.F.car }

The tail procedure duplicates the node referenced by q into
variable r, then eliminates the front-most element of r. I use
the build statement to direct r.cleanup into r. Equivalently,
I could have built q.cleanup inside r.

proc root tail (q) {

if (q.F.nil?)

set this r q;

else {

dup r this q;

set r F F.cdr;

set r lenF (r.lenF - 1);

build r r.cleanup () } };

Now, suppose we start a new pGrasp session with lists and
queues, and a fresh work space in the current node. First,
construct an empty queue.

new this Q queue ();

The heap now has the following structure.

nr work 7→n1 tail 7→ϕ7 head 7→ϕ6 · · ·

n1

Q 7→n2

nc

n2 lenR 7→0 lenF 7→0 R 7→n4 F 7→n3 · · ·

n3 nil? 7→ true

n4 nil? 7→ true

Enqueue four numbers.

build Q Q.snoc (6);

build Q Q.snoc (7);

build Q Q.snoc (8);

build Q Q.snoc (9);

8 2014/1/10

The first snoc conses 9 onto the rear of Q. Since Q.F is empty,
cleanup moves the rear to the front. The second snoc conses
8 onto Q.R without calling cleanup. The third snoc behaves
similar to the first.

n2 lenR 7→0 lenF 7→4 R 7→n10 F 7→n8 · · ·

n5 cons? 7→ true cdr 7→n9 car 7→9

n6 cons? 7→ true cdr 7→n5 car 7→8

n7 cons? 7→ true cdr 7→n6 car 7→7

n8 cons? 7→ true cdr 7→n7 car 7→6

n9 nil? 7→ true

n10 nil? 7→ true

Pop an element off the queue. Since Q.R is empty, no
cleanup is necessary.

return this Q tail (Q) r;

The queue appears to shrink because the variable Q receives
a copy if its “tail.” Figure 2 show the resulting graph-store.
Here is the final heap.

nr work 7→n1 tail 7→ϕ7 head 7→ϕ6 · · ·

n1

Q 7→n2

nc

n2 lenR 7→0 lenF 7→3 R 7→n10 F 7→n7 · · ·

n5 cons? 7→ true cdr 7→n9 car 7→9

n6 cons? 7→ true cdr 7→n5 car 7→8

n7 cons? 7→ true cdr 7→n6 car 7→7

n9 nil? 7→ true

n10 nil? 7→ true

The loose connectivity of this distributed task queue exempli-
fies a growing class of socially-motivated distributed software
systems, where the operator of a system can contribute com-
puting resources to others. With reasonable effort, we could
extend this example with identity management and task sub-
mission quotas. Perhaps we could tie quotas meaningfully to
the amount of resources contributed over time, to be bought
and sold like a commodity, and enabling a digital equivalent
to taxes.

3.3 Distributed Tasks

Since pGrasp does not support concurrency directly, I imple-
ment a distributed task scheduler in the following round-about
manner. A dedicated pGrasp instance hosts a distributed task
queue, along with a server program and a client API. The
server program listens for incoming requests. The client API
contains commands to request and submit labeled tasks and
results.

The server’s task queue remains empty until another pGrasp
instance submits some tasks. If an instance requests a task
and the queue is not empty, the head task is removed from the
queue and given to the requester along with a serial number.
The requester must then run the task and submit the result
back to the server. The server caches results until another
instance requests them.

Suppose we have two descriptively named procedures,
listen and connect, that take no arguments and produce a
cursor named c. Then figure 3 contains an implementation of
the distributed task queue.

The task submission command takes a list of nodes, where
each node in the list contain a label variable and a run

procedure that takes no arguments and stores its result in a
variable named result. The results request command takes
a label and stores any returned results in a variable named
results. The task request command takes no arguments. It
requests and runs a single task from the server, then returns
the result back to the server along with the serial and label
embedded in the task. The server program takes no arguments.
It listens for a client action and reacts accordingly.

4. Formal Specification
4.1 Syntax

Figures 4-8 present the formal grammar. I partition the gram-
mar into three major syntactic classes: statements, expres-
sions, and values. A valid statement reduces to ε (skip) while
possibly affecting the run-time state. A valid expression eval-
uates, without effect, to a value, i.e., a normal form. Denote
statements, expressions, and values by meta-variables s, e,
and v, respectively.

4.2 Semantics

Figures 9-12 present the operational semantics of pGrasp as
inference rules in a small-step style. Denote by G a graph
store, and by D a dispatch object. A judgment of the form
〈G, e〉 e′ specifies a step from expression e to expression
e′ in the context of graph-store G. A judgment of the form
〈G,D, s〉 〈G′, D′, s′〉 specifies a step from statement s
to statement s′ in the context of graph-store G and dispatch
object D. The resulting state consists of graph-store G′ and
dispatch object D′.

Denote by H , Σ, and n a heap and a node, and a node
reference, respectively. Denote by ∅ and Q a fresh empty
node and a fresh empty queue, respectively. Denote by nr and
nc a root reference and a current node reference, respectively.
I occasionally decompose a graph-store into a tuple of its
components: G = (H,nr, nc).

Write ∆ a dictionary such as a node or dispatch object.
Denote by ∆[α 7→ β] the dictionary ∆ extended with a
mapping from α to β, where α is some reference object or
variable name, depending on the nature of ∆, and β is some

9 2014/1/10

work

Q

cdr cdr cdrF

R

nr

tail 7→ϕ7

head 7→ϕ6

...

n1

n2

lenR 7→0
lenF 7→3
cleanup 7→ϕ9

snoc 7→ϕ8

n7

cons? 7→ true
car 7→7

n6

cons? 7→ true
car 7→8

n5

cons? 7→ true
car 7→9

n9

nil? 7→ true

n10

nil? 7→ true
nc

Figure 2: A queue structure.

proc root sendtasks (label,tasks) {

return this c connect () c;

print c "send tasks";

print c label;

while (not tasks.nil?) {

print c tasks.car;

set this tasks tasks.cdr };

print c "done";

close c };

proc root getresults (label) {

return this c connect () c;

print c "get results";

print c label;

read c this results;

close c };

proc root gettask () {

return this c connect () c;

print c "get task";

read c this task;

close c;

when (not (task == null))
build task task.run ();

return this c connect () c;

print c "send result";

print c task;

close c };

proc root server () {

node this R;

new this Q queue ();

set this S = 1;

while (true) {

return this c listen () c;

read c cmd;

if (cmd == "send tasks") {

read c task;

while (not (task == "done")) {

set task serial S;

set this S (S + 1);

build Q Q.snoc (task);

read c task } }

else if (cmd == "get task") {

return this task head (Q) x;

return this Q tail (Q) r;

print c task }

else if (cmd == "send result") {

read c label;

read c task;

when (not R.label)

new R label nil ();

new R label cons (task, R.label) }

else if (cmd == "get results") {

read c label;

print c R.label;

unset R label } } }

Figure 3: A distributed task queue.

10 2014/1/10

object suitable for storage in∆. The equation∆ = ∆′[α 7→β]
denotes a dictionary ∆′ of all the mappings of ∆ except the
one from α, if it exists. Denote by ∆(α) a dictionary look up:

∆(α) = β ⇐⇒ ∆ = ∆′[α 7→β]

If ∆ contains no mapping from α, then ∆(α) = null. Denote
by ∆(α1)(α2) a two step look up:

∆(α1)(α2) = β ⇐⇒ ∆(α1) = ∆′ ∧∆′(α2) = β

For convenience, define the following single-variable update
relation:

∆[α1:α2 7→β] ≡ ∆[α1 7→∆(α1)[α2 7→β]]

Denote by ∆1 ∪∆2 the dictionary that contains all mappings
of ∆1 and ∆2, where the mappings of ∆2 take precedence.
Assuming ∆ contains a mapping from α to some queue,
denote by ∆[α ⇐\ β] the enqueue operation of β onto the
queue referenced by α, and by ∆[α Z⇒ β] the dequeue
operation of β from the queue referenced by α.

4.2.1 Helpers

Denote by args(e, v) a fresh node in which the parameters of
e are assigned to the corresponding arguments of v. Denote
by copy(n) a fresh node reference to a shallow copy of the
node referenced by n. Denote by request(n) a fresh cursor
to the resource described by the node referenced by n, or null
if the resource is unavailable. Denote by flush(c) the queue
referenced by cursor c, emptied by unspecified means. Denote
by encode(v) and decode(v) the serialized and unserialized
representation, respectively, of value v.

5. Implementation
I implemented the prototype in Racket [3, Version 5.3.6],
a Scheme variant. The implementation is, however, behind
the current specification, so some of the programs in this
document have not been tested live.

In the implementation, I represent the skip statement by the
empty string. For instance, in the statement,

while true;

the body of the loop is a single skip statement. For heap
garbage collection, I track node linkage by simple reference
counting. For term encoding and decoding, I use the built-
in Racket term printer and reader. I transmit most primitive
values as-is, omitting cursors, but effective node reference en-
coding is still an open question. For now, I encode referenced
nodes recursively.

6. Discussion
The syntax of pGrasp is closest to C, but pGrasp is closer
in spirit to assembly language—neither enforces a particu-
larly complex call stack discipline and both require careful

though to avoid unintentional clobbering of data. Addition-
ally, pGrasp has some elements of Java, e.g., references and
garbage collection, along with the print/read constructs of
Scheme. Because of the apparently low level at which the
most basic pGrasp constructs operate, I believe a practical
pGrasp platform with excellent performance, or at least rea-
sonably good performance, is within reach. I can not yet
predict the performance of a rewrite-based GSP language,
although I think we could reasonably expect performance
comparable to a purely functional language due to the matu-
rity of the underlying theories and the performance of existing
rewrite-based languages.

At a higher level of detail, pGrasp requires many constructs
of convenience in order to produce reasonably compact
code—four primitive procedure call constructs seems like too
many. I also rely heavily on unscalable naming and calling
conventions. I could alleviate these symptoms with a proper
abstraction mechanism, but a basic macro facility could have
similar effect and be more useful. Neither solution is ideal
because neither is simple and none of these issues exist in
a proper rewrite-based approach. Though staged evaluation
might provide a scalable solution for returning values from
procedure calls, the outcome betrays the overall vision for
GSP and so I can not justify a possibly messy exploration
into imperative staging.

The potential for explicit, high level call stack management
in pGrasp is interesting in its own right, but a GSP setting
offers benefits that are difficult or impossible to achieve in
an imperative language. For example, fully pluggable type
systems are all but trivial in a GSP language.

As a final thought, in either pGrasp or a pure GSP language,
we could hook native programs directly into the encoding
and decoding mechanisms with a simple callback mechanism,
which would simplify integration with virtually all other tech-
nologies that use messaging, in the loose sense of messaging
defined in the introduction.

7. Conclusion
I started the pGrasp project as an exercise in comparing GSP
concepts to existing programming language technologies, to
discover concrete examples from which to start a discussion
about GSP and the issues it addresses. Designing a language
like pGrasp, however, is like driving a screw with a sledge
hammer—I get my point across, but I destroy the foundation
in the process.

There is a clear discrepancy between the short-term goals
of this project and the broader vision of the graph-store
programming paradigm. With that in mind, I have identified
at least three possible paths forward.

The GSP paradigm requires a fundamentally non-modular
approach to software construction. Considering the pervasive
importance of modularity in modern software engineering,

11 2014/1/10

I do not expect rapid adoption of the paradigm until I put
significant work into a production platform and supporting
tools. While implementing the entire vision is clearly too
large a task for a single Masters thesis, a coherent language
based on graph rewriting—a staged, pattern-based design—is
certainly within reach.

On the other hand, GSP principles may be applied, to some
extent, in any language with dictionaries, including C, Python,
and Perl. For each language, I could implement the pGrasp
constructs in a cross-platform message processing and pass-
ing library, though performance of such a library in any lan-
guage remains unclear. From a usability perspective, this
approach is most attractive for languages with strong meta-
programming or other DSL construction features, such as
Scheme, Haskell, and Ruby.

The current pGrasp design alludes to a similar but more intu-
itive and performant revision. With some work, I could polish
the design and produce a useful and reasonably efficient plat-
form. The prospect of a practical pGrasp implementation
has already drawn interest from members of academia and
industry.

References
[1] T. Brus, M. C. van Eekelen, M. Van Leer, and M. J. Plasmeijer.

Cleana language for functional graph rewriting. In Functional
Programming Languages and Computer Architecture, page
364384, 1987.

[2] T. L. CASAVANT and J. G. KUHL. A taxonomy of scheduling
in general-purpose distributed computing systems. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, 14(2):141,
1988.

[3] M. Flatt and PLT. Reference: Racket. Technical Report
PLT-TR-2010-1, PLT Inc., 2010. http://racket-lang.org/tr1/.

[4] A. Goldberg and A. Kay. Smalltalk-72: Instruction Manual.
Xerox Corporation, 1976.

[5] A. Graf. The Pure programming language. See, 2009.

[6] T. Isakowitz, M. Bieber, and F. Vitali. Web information systems.
Communications of the ACM, 41(7):7880, 1998.

[7] C. B. Jay. The pattern calculus. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 26(6):911937,
2004.

[8] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. Theoretical computer science, 96(1):73155,
1992.

[9] C. Okasaki. Purely functional data structures. PhD thesis,
Citeseer, 1996.

[10] D. Plump. Term graph rewriting. Handbook of graph gram-
mars and computing by graph transformation, 2:361, 1999.

[11] G. Rozenberg. Handbook of graph grammars and computing
by graph transformation, vol 1: Foundations. World Scientific,
1997.

[12] E. Scott and A. Johnstone. GLL parsing. Electronic Notes in
Theoretical Computer Science, 253(7):177–189, Sept. 2010.

s :: = ε skip
| s; s sequence
| node e x create fresh node
| dup e e x duplicate node
| set e x e set variable
| unset e x drop variable
| reset e empty existing node
| in e change work node

e :: = x variable
| e.e path expression
| root root node
| this current node

v :: = n node reference
| null null reference

Figure 4: Core syntax.

s :: = . . .
| proc e x e s define procedure
| call e e call procedure
| build e e e call-in-node
| new e x e e call-in-new-node
| return e x e e x call-and-save

e :: = . . .
| () unit expression
| e, e tuple expression

v :: = . . .
| () unit value
| v, v tuple value
| ϕ(e, s) procedure object

Figure 5: Procedure syntax.

ISSN 15710661. .

[13] W. Taha. Multi-stage programming: Its theory and applications.
PhD thesis, Citeseer, 1999.

12 2014/1/10

E-PATH1
〈G, e1〉 e′1

〈G, e1.e2〉 e′1.e2〉

E-PATH21
〈(H,nr, n), e〉 e′

〈G,n.e〉 n.e′〉

E-PATH22

〈G,n1.n2.e〉 n2.e

E-PATH

〈G,n.v〉 v

E-VARIABLE

〈G, x〉 G(nc)(x)

E-ROOT

〈G, root〉 nr

E-THIS

〈G, this〉 nc

S-SEQUENCE1
〈G,D, s1〉 〈G,D, s′1〉

〈G,D, s1; s2〉 〈G,D, s′1; s2〉

S-SEQUENCE2

〈G,D, ε; s〉 〈G,D, s〉

S-NODE1
〈G, e〉 e′

〈G,D, node e x〉 〈G,D, node e′ x〉

S-NODE
G′ = G[n:x 7→∅]

〈G,D, node n x〉 〈G′, D, ε〉

S-DUP1
〈G, e1〉 e′1

〈G,D, dup e1 e2 x〉 〈G,D, dup e′1 e2 x〉

S-DUP2
〈G, e〉 e′

〈G,D, dup n e x〉 〈G,D, dup n e′ x〉

S-DUP
G′ = G[n2:x 7→copy(n1)]

〈G,D, dup n1 n2 x〉 〈G′, D, ε〉

S-SET1
〈G, e1〉 e′1

〈G,D, set e1 x e2〉 〈G,D, set e′1 x e2〉

S-SET3
〈G, e〉 e′

〈G,D, set n x e〉 〈G,D, set n x e′〉

S-SET
G′ = G[n:x 7→v]

〈G,D, set n x v〉 〈G′, D, ε〉

S-UNSET1
〈G, e〉 e′

〈G,D, unset e x〉 〈G,D, unset e′ x〉

S-UNSET
G(n) = Σ[x 7→v]

〈G,D, unset n x〉 〈G[n 7→Σ], ε〉

S-RESET1
〈G, e〉 e′

〈G,D, reset e〉 〈G,D, reset e′〉

S-RESET
G′ = G[n 7→∅]

〈G,D, reset n〉 〈G′, D, ε〉

S-IN1
〈G, e〉 e′

〈G,D, in e〉 〈G,D, in e′〉

S-IN

〈G,D, in n〉 〈(H,nr, n), D, ε〉

Figure 9: Core semantics.

s :: = . . .
| open e e x create cursor
| close e destroy cursor
| send e e raw output
| recv e e x raw input
| print e e structured output
| read e e x structured input

e :: = . . .
| stdio standard input/output
| stderr standard error

v :: = . . .
| c cursor value

Figure 6: I/O syntax.

s :: = . . .
| when e s optional statement
| if e s else s conditional statement
| while e s iteration

e :: = . . .
| if e e else e conditional expression
| e and e conjunction
| e or e disjunction
| not e negation
| e == e equality test
| true truth
| false untruth

v :: = . . .
| true truth value
| false untruth value

Figure 7: Logic syntax.

13 2014/1/10

E-TUPLE1
〈G, e1〉 e′1

〈G, e1, e2〉 e′1, e2

E-TUPLE2
〈G, e〉 e′

〈G, v, e〉 v, e′

S-PROC1
〈G, e1〉 e′1

〈G,D, proc e1 x e2 s〉 〈G,D, proc e′1 x e2 s〉

S-PROC
G′ = G[n:x 7→ϕ(e, s)]

〈G,D, proc n x e s〉 〈G′, D, ε〉

S-CALL1
〈G, e1〉 e′1

〈G,D, call e1 e2〉 〈G,D, call e′1 e2〉

S-CALL2
〈G, e〉 e′

〈G,D, call ϕ e〉 〈G,D, call ϕ e′〉

S-CALL
G′ = G[nc 7→G(nc) ∪ args(e, v)]

〈G,D, call ϕ(e, s) v〉 〈G′, D, s〉

S-BUILD1
〈G, e1〉 e′1

〈G,D, build e1 e2 e3〉 〈G,D, build e′1 e2 e3〉

S-BUILD2
〈G, e2〉 e′2

〈G,D, build n e2 e3〉 〈G,D, build n e′2 e3〉

S-BUILD3
〈G, e3〉 e′3

〈G,D, build n ϕ e3〉 〈G,D, build n ϕ e′3〉

S-BUILD
s = (in n; call ϕ v; in nc)

〈G,D, build n ϕ v〉 〈G,D, s〉

S-NEW
s = (node e1 x1; build e1.x1 e2 e3)

〈G,D, new e1 x1 e2 e3〉 〈G,D, s〉

E-RETURN
s = (build n e2 e3; set e1 x1 n.x2) n fresh
〈G,D, return e1 x1 e2 e3 x2〉 〈G,D, s〉

Figure 10: Procedure semantics.

e :: = e + e addition
| e - e subtraction
| e * e multiplication
| e / e division
| R number

v :: = . . .
| R numeric value

Figure 8: Arithmetic syntax.

14 2014/1/10

E-STDIO

〈G, stdio〉 cio

E-STDERR

〈G, stderr〉 cerr

S-OPEN1
〈G, e1〉 e′1

〈G,D, open e1 e2 x〉 〈G,D, open e′1 e2 x〉

S-OPEN2
〈G, e〉 e′

〈G,D, open n e x〉 〈G,D, open n e′ x〉

S-OPEN
G′ = G[n2:x 7→c] D′[c 7→Q] c = request(n1)

〈G,D, open n1 n2 x〉 〈G′, D′, ε〉

S-CLOSE1
〈G, e〉 e′

〈G,D, close e〉 〈G,D, close e′〉

S-CLOSE
D = D′[c 7→flush(c)]

〈G,D, close c〉 〈G,D′, ε〉

S-SEND1
〈G, e1〉 e′1

〈G,D, send e1 e2〉 〈G,D, send e′1 e2〉

S-SEND2
〈G, e〉 e′

〈G,D, send c e〉 〈G,D, send c e′〉

S-SEND
D′ = D[c⇐ \v]

〈G,D, send c v〉 〈G,D′, ε〉

S-RECV1
〈G, e1〉 e′1

〈G,D, recv e1 e2 x〉 〈G,D, recv e′1 e2 x〉

S-RECV2
〈G, e〉 e′

〈G,D, recv c e x〉 〈G,D, recv c e′ x〉

S-RECV
D′ = D[c Z⇒v] G′ = G[n:x 7→v]

〈G,D, recv c n x〉 〈G′, D′, ε〉

S-PRINT1
〈G, e1〉 e′1

〈G,D, print e1 e2〉 〈G,D, print e′1 e2〉

S-PRINT2
〈G, e〉 e′

〈G,D, print c e〉 〈G,D, print c e′〉

S-PRINT
D′ = D[c⇐ \encode(v)]

〈G,D, print c v〉 〈G,D′, ε〉

S-READ1
〈G, e1〉 e′1

〈G,D, read e1 e2 x〉 〈G,D, read e′1 e2 x〉

S-READ2
〈G, e〉 e′

〈G,D, read c e x〉 〈G,D, read c e′ x〉

S-READ
D′ = D[c Z⇒v] G′ = G[n:x 7→decode(v)]

〈G,D, read c n x〉 〈G′, D′, ε〉

Figure 11: I/O semantics.

15 2014/1/10

E-IF1
〈G, e1〉 e′1

〈G, if e1 e2 else e3〉 if e′1 e2 else e3

E-IF2
v /∈ {false, null}

〈G, if v e2 else e3〉 e2

E-IF3
v ∈ {false, null}

〈G, if v e2 else e3〉 e3

E-AND1
〈G, e1〉 e′1

〈G, e1 and e2〉 e′1 and e′2

E-AND2
v /∈ {false, null}

〈G, v and e2〉 e2

E-AND3
v ∈ {false, null}

〈G, v and e2〉 false

E-OR1
〈G, e1〉 e′1

〈G, e1 or e2〉 e′1 or e2

E-OR2
v ∈ {false, null}
〈G, v or e2〉 e2

E-OR3
v /∈ {false, null}
〈G, v or e2〉 v

E-NOT
〈G, e〉 e′

〈G, not e〉 not e′

E-NOT1
v ∈ {false, null}
〈G, not v〉 true

E-NOT2
v /∈ {false, null}

〈G, not v〉 false

E-EQUALS1
〈G, e1〉 e′1

〈G, e1 == e2〉 e′1 == e2

E-EQUALS2
〈G, e2〉 e′2

〈G, v1 == e2〉 v1 == e′2

E-EQUALS3
v1 = v2

〈G, v1 == v2〉 true

E-EQUALS4
v1 6= v2

〈G, v1 == v2〉 false

S-WHEN
〈G, e〉 e′

〈G,D,when e s〉 〈G,D,when e′ s〉

S-WHEN1
v ∈ {false, null}

〈G,D,when v s〉 〈G,D, ε〉

S-WHEN2
v /∈ {false, null}

〈G,D,when v s〉 〈G,D, s〉

S-IF
〈G, e1〉 e′1

〈G,D, if e s1 else s2〉 〈G,D, if e′ s1 else s2〉

S-IF1
v /∈ {false, null}

〈G,D, if v s1 else s2〉 〈G,D, s1〉

S-IF2
v ∈ {false, null}

〈G,D, if v s1 else s2〉 〈G,D, s2〉

S-WHILE

〈G,D,while e s〉 〈G,D,when e (s;while e s)〉

Figure 12: Logic semantics.

16 2014/1/10

	Introduction
	Graph-store Processing

	The pGrasp Language
	Nodes and References
	Paths
	Procedures
	I/O

	Example Sessions
	Lists
	Queues
	Distributed Tasks

	Formal Specification
	Syntax
	Semantics
	Helpers

	Implementation
	Discussion
	Conclusion

