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Abstract
Programming language designers must routinely strike a
compromise between flexibility, simplicity, and performance
as competing goals determined by their creations’ intended
audiences. Historical programming language designs valued
flexibility and performance over simplicity. We introduce a
novel design methodology called pluggable programming
that is simpler and less restrictive than existing methodolo-
gies centered around module- or object- based encapsula-
tion. To showcase the flexibility inherent in our novel ap-
proach, we design and implement Grasp—to our knowl-
edge, the first fully pluggable programming language.

1. Introduction
Good, cheap, fast—pick two. Software engineers routinely
balance these competing objectives. As programming lan-
guage designers, we may re-cast this trilemma: flexible, sim-
ple, performant—pick two. Historically, programming lan-
guage designs valued flexibility and performance over sim-
plicity. Some time around the late sixties, language designers
began to realize that simplicity was of value [5] comparable
to the other two qualities. The “simplicity in computing” rev-
olution started around the time of IMP [13] and Smalltalk [9]
and has continued to bear fruit [15] [12] [8] [10] [14] [1] [2].
We now understand simplicity as the desirable quality of a
system which harmonizes generality and ease of use.

This report attempts to tip the balance even further toward
flexibility and simplicity by pushing the limits of abstrac-
tion to maximize a quality we call pluggability. Though this
word might evoke imagery of modules [2], our definition of
pluggability transcends the module. In fact, our novel ap-
proach completely inverts the established software construc-
tion methodology. Our reasoning for abandoning decades of
established tradition is thus: modules are agents of restric-
tion; given a fully open and pluggable system, we can maxi-
mize flexibility without resorting to modules by simplifying
program composition in a way that allows us to write ar-
bitrarily complex programs in their simplest possible forms
and then improve their performance when and where needed
by composing them with more performant programs.

The cult of modularity is perhaps our greatest obstacle to
full pluggability. Software built in traditional languages

like C, C++, or Java require strong assumptions—such as
knowledge of external bindings at write, compile, and run
times—that, in many cases, do not scale well beyond a sin-
gle program or library and ultimately restrict the sharing of
functionality between dissimilar programs. Dynamic object-
oriented languages like Smalltalk, Python, and Ruby provide
features more amenable to program sharing. Perl has been
very successful in this respect, as evidenced by its extensive
CPAN library.

We can do better, though. These languages are designed,
each to varying degrees, around a notion of encapsulation by
restriction. We believe that Perl’s technical success is a direct
consequence of its cultural success. To justify this claim, we
quote Larry Wall’s daughter Heidi [16] on Perl’s success as
“the first postmodern” programming language:

That’s why IMP [Interactive Math Program, a math
curriculum in which you sort of learn everything at
once] is better for math students like me–we learn bet-
ter when we can see the big picture, and how every-
thing fits in. The old way of learning math never gave
you any context.

...
Look at the big picture. Don’t focus in on two or
three things to the exclusion of other things. Keep
everything in context. Don’t go out of your way to
justify stuff that’s obviously cool. Don’t ridicule ideas
merely because they’re not the latest and greatest.
Pick your own fashions. Don’t let someone else tell
you what you should like.

Setting any philosophical ideals aside, we must explain the
mechanisms by which we intend to implement such lofty
ambitions. Grasp is an extensible term rewriting platform
with flexible syntax that provides at least two tools to the
postmodern programmer. First, domain-specific syntax is
easy to capture and transform in Grasp. Second, Grasp can
translate abstract high level programs incrementally into
concrete and locally optimized programs. These features
advance the state of the art in programming methodology
in subtle but tremendously valuable ways—no less than a
generalization of object-oriented programming with support



for modern features like partial evaluation, declarative style,
and much more.

Grasp expands upon the notion of Smalltalk [9] as a recur-
sion on the notion of computer. We generalize the five ma-
jor concepts of Smalltalk [7]—objects, messages, classes,
instances, and methods—to four concepts: contexts, stages,
patterns, and bindings. We define these terms in Section 5
and use them to discuss Grasp’s features in Sections 6-8.

This report is organized as follows. Section 2 places Grasp
within the bigger picture of existing work. Section 3 in-
troduces the syntax and semantics of Grasp in an informal
style. Section 4 introduces details necessary for understand-
ing Grasp source programs. Section 5 explains the four ma-
jor concepts of Grasp and how these concepts are combined
to make programs. Section 6 provides simple example of
Grasp in action.

2. Related Work
Operationally speaking, Grasp is a veritable mash-up of
Church’s untyped lambda calculus [3], Scheme [10],
Smalltalk [7], and MetaML [14], though Grasp borrows lib-
erally from the syntax of modern research-oriented func-
tional languages like Haskell [8] and ML [12].

Theoretically speaking, Grasp is founded on various ideas
gleaned from existing work on rewrite systems [4] in gen-
eral and term rewriting systems (TRS) [11] in particular, al-
though a formal theory for Grasp is a topic for future work.
Various languages based on TRS exist, and systematic com-
parisons of Grasp with other TRS is another topic for future
work.

Practically speaking, Grasp’s utility overlaps significantly
with OMeta [17]. OMeta extends a host language with a
PEG-based DSL to process other languages. OMeta pro-
grams are grammars with semantic actions written in the
host language. Grasp, on the other hand, is self-hosting and
uses pattern matching instead of grammars to accomplish
roughly the same tasks. The set of languages generated by
Grasp patterns is, consequently, strictly smaller than the set
of languages generated by OMeta grammars.

3. Overview of Grasp
3.1 Semantics

This section gives an overview of Grasp’s semantics. A de-
tailed informal semantics is the subject of Section 5. Ap-
pendix A provides a formal operational semantics.

Grasp can be characterized loosely as a statically scoped
programming language. Each use of a bound variable is
associated with a lexically apparent binding of that variable.

Grasp provides no built-in typing facilities. Fully plug-
gable [1] type checkers, inferencers, and coercers may all
be written as Grasp programs and applied at will. We illus-

trate the power of this approach with a hypothetical type
checker for explicitly typed programs. First, observe that a
type checker is merely a program that consumes other pro-
grams. Our hypothetical checker can produce various use-
ful behaviors. For instance, it can evaluate a successfully-
checked program, return a type-erased copy of the input
program, instrument typed expressions with run-time type
checks, or simply report the results of the check.

Grasp bindings are objects in their own right. Bindings can
be created dynamically, stored in data structures, returned
as results, and so on. Arguments to Grasp bindings can be
passed by value or by name, depending on the relationship
between the applied binding and the active context, which
means that the actual argument expressions may or may not
be evaluated before the binding gains control. Furthermore,
call-by-name semantics may be specified explicitly. See Sec-
tion 5.4 for details.

One distinguishing feature of Grasp is that evaluation con-
texts, which in most other languages only operate implicitly,
have “first-class” status as well as explicit activation syntax.
Contexts are useful for implementing a wide variety of con-
structs, including closures, objects, and records.

A related distinguishing feature of Grasp is that unevalu-
ate code fragments called stages also have “first-class” sta-
tus. Stages are useful for directing evaluation of code frag-
ments. Under an object-oriented programming style, there is
no distinction between message passing and stage-directed
evaluation. In fact, Grasp passes messages in the form of
stages, which bear resemblance to Smalltalk blocks. We may
view messages as blocks to be evaluated within the receiv-
ing context. This arrangement is strictly more general than
in other object-oriented languages. For instance, according
to the SmallTalk-80 reference [7],

A message specifies which operation is desired, but
not how that operation should be carried out. The re-
ceiver, the object to which the message was sent, de-
termines how to carry out the requested operation. For
example, addition is performed by sending a message
to an object representing a number.

While this characterization of Smalltalk messages largely
applies to Grasp in the abstract, the trailing example high-
lights an important distinction; namely, in Grasp, addition is
performed by sending a message to a context that contains
compatible notions of number and addition. More specif-
ically, Grasp has no built-in notion of object, number, or
arithmetic. Smalltalk numbers are objects which receive the
“addition” message parameterized by the addend. In Grasp,
numbers and arithmetic operators are just symbols and the
entire arithmetic system is fully pluggable. An implementa-
tion in which numbers represent objects that receive simple
parameterized messages is but one of many possibilities in
Grasp.



Staying with the object-oriented perspective for now, an-
other powerful feature of Grasp is that messages may contain
unbound symbols. Suppose we have a context that imple-
ments arithmetic and another that implements a syntax for
matrices. We can then evaluate all of the arithmetic expres-
sions within a given matrix by simply staging the entire ma-
trix within the arithmetic context. Assuming the arithmetic
context does not bind the symbols in our matrix notation,
those symbols are left intact in the result.

The most unusual aspect of Grasp semantics is its novel
combination of staging—rather, stage nesting—and the in-
duced “percolation” of free variables up successive stages.
Grasp programs elicit behavior in the form of “closures”—
combinations of contexts and stages. A stage is a code frag-
ment guarded against evaluation by a simple annotation, and
a context is a collection of declarations that govern how
stages are evaluated. When combined, stages and contexts
perform computations. Since Grasp closures may contain
unbound symbols, they are not technically closed in the tra-
ditional sense.

3.2 Syntax

The grammar of Grasp generates a sublanguage of the lan-
guage used for data. An important consequence of this sim-
ple, uniform representation is the susceptibility of Grasp pro-
grams and data to uniform treatment by other Grasp pro-
grams. The reader performs syntactic as well as lexical de-
composition of the data it reads.

3.3 Notation and Terminology

Grasp operational semantics are described in a small-step
style, but our unusual evaluation strategy occasionally leads
to discussion of various degrees of partial evaluation. The
symbol “−→” should be read “steps to.” The symbol “−→∗”
should be read “multi-steps to.” The symbol “⇓” should be
read “evaluates to.” For example,

2 + 3 −→∗ plus 2 3 ⇓ 5

means that the term 2 + 3 multi-steps to the term plus 2 3,
which evaluates to the symbol 5.

3.4 Naming Conventions

Grasp often follows the usual Scheme naming conven-
tions, such as suffixing predicates by “?” and infixing
type-conversion operations with “->”. By convention, “#”
prefixes implementation-specific operations. For example,
“#load” takes a module name and returns the program
stored within the corresponding file. Our usage of “#” is,
however, the only significant deviation from Scheme nam-
ing conventions. In addition to the Scheme convention, the
prefix “:” often denotes a literal symbol for pattern match-
ing.

4. Lexical Conventions
This section gives an informal account of some of the lexical
conventions used in writing Grasp programs. For a formal
syntax of Grasp, see Appendix A.

4.1 Symbols

Most atomic constructs allowed by other programming lan-
guages belong to a single class of symbols in Grasp. A sym-
bol is any sequence of non-whitespace characters not re-
served by the formal syntax. In particular, numbers are just
symbols and any floating-point implementation must not use
“.” as a decimal point because the character is reserved for
staging annotations. We consider this particular limitation a
weakness to be rectified in future versions of the language.
Symbols are case-sensitive.

4.2 Whitespace and Comments

Whitespace characters include spaces, horizontal tabs, and
newlines. Whitespace is used for improved readability and
as necessary to separate symbols from each other, but is
otherwise insignificant. Whitespace may not occur within a
symbol.

A double dash (--) indicates the start of a comment. The
comment continues to the end of the line on which the dashes
appear. Comments are treated as whitespace by the reader.

-- The "fact" bindings compute the factorial of

-- a non -negative integer.

{ :fact 0 -> 1

; :fact n -> n * (‘fact (n - 1))

}

4.3 Other Notations

The following symbols are reserved by the formal syntax.

( ) Parentheses are used purely for grouping, and are op-
tional wherever grouping is implied by the lexical con-
text. In particular, parentheses are not required around the
outer-most level of a term.

{ } Braces denote the boundaries of an evaluation context.

→ The arrow is used to separate a binding’s key from its
body. In source listing, the arrow is rendered as “->”.

; The semicolon separates individual elements of an exten-
sion. See Section 5.4 for details.

. The dot serves two distinct but related roles. In a function
definition, the dot separates the bound variable from the
function body. Elsewhere, the dot is the staging annota-
tion.

‘ The backtick delays evaluation of a term. See Section 5.4
for details.

\ The backslash denotes the start of a function.



5. Basic Concepts
5.1 Terms

Symbol are the simplest form, in that they are not composi-
tions of other terms. A symbol that names a term is called a
variable and is said to be bound to that term. The most fun-
damental of the variable binding constructs is the binding, as
detailed in Section 5.3. Function application reduces directly
to uncontained binding application.

Application, denoted by juxtaposition, associates terms in a
left-associative manner. Extension, denoted by semicolon,
associates terms in a right-associative manner. Extended
terms are equivalent to the lists of Scheme. Generally speak-
ing, compound terms evaluate from left to right.

Unlike most other languages, Grasp has no fixed notion of
value. In Grasp, a value is any term that does not step. This
arrangement empowers Grasp with unprecedented flexibility
to combine programs—evaluation occurs around unfamiliar
notation, which is left intact.

5.2 Patterns

Grasp patterns operate similarly to the patterns of functional
languages like ML [12] and Haskell [8], except that pattern
matching produces a labeled summary of the match attempt.
Stages double as patterns when applied to other stages. The
pattern match

.p .t

performs a structural comparison of the term p against the
term t. If p does not match t, we get the symbol mismatch.
Otherwise, we get the symbol match applied to a context
describing the match. For example,

.(x y) .(a b) ⇓ match {:x→ a; :y → b}

.:x .a ⇓ mismatch

These two examples illustrate a special kind of pattern, the
literal pattern. A literal pattern matches only the symbol
following the colon. Another kind of special pattern is the
skip pattern, denoted by “ ”. A skip pattern matches and
ignores any structure.

5.3 Bindings

In conventional parlance, a binding maps a name to a piece
of data. Our definition is strictly more general. The binding

b = pb → tb

maps pattern pb to term tb.

Bindings are the primary vehicle for term rewriting. Uncon-
tained bindings behave like macros—rewriting occurs be-
fore evaluation. When contained within a context, bindings
behave like functions. See Section 5.4 for details.

If we apply b to a term t such that .pb .t ⇓ match c,
then b t −→ c tb. If pb is a literal pattern, then b behaves
like a conventional variable binding. If pb is a symbol, then
b t −→ (:pb → t) tb, unless pb is the skip symbol, in which
case b t −→ tb.

5.4 Contexts and Stages

Contexts are the fundamental construct for containment. The
context

c = {t}

contains term t. Although we also use parentheses to delin-
eate compound terms, contexts behave more like cell mem-
branes in that they can pass information through their bound-
ary. Contexts are, however, not entirely like cell membranes
in that contexts allow unfamiliar information to pass through
by default.

If t contains either a binding or an extension of bindings,
then the bindings of t encode the evaluation strategy of c. We
say that the bindings of t are contained by c or, conversely,
that c contains the bindings of t.

Whenever we apply c to some stage .t1, we force t1 to
evaluate. When t1 can no longer evaluate on its own, any
bindings contained in c are recursively matched against t1.
If c contains a matching binding, t1 is transformed and
then continues evaluation on its own. The evaluate-match-
transform loop continues until t1 no longer evaluates on its
own or matches any binding contained in c, at which point
we get back t1 with single level of quotation stripped off.
This arrangement allows us to think of contained bindings
as functions and uncontained bindings as macros, because
the presence or absence of context has a direct effect on the
order in which evaluation and transformation occur.

As a final note, the current implementation applies contained
bindings in order from left to right, although no two bindings
within a given context may contain structurally identical
keys.

6. Examples
In this section, we present a few small examples to highlight
Grasp’s flexibility. All of these examples run in the current
interpreter as presented.

6.1 The Interpreter

Grasp is implemented as a package in Racket 5.2.1. To
install the interpreter, unpack the grasp-cs239.tar.gz

distribution tarball and point the rack link command at
it:

raco link grasp -cs239/src/cs23

To run the interpreter, start racket and load the library:

cd grasp -cs239

racket



> (enter! cs239/untyped)

> (repl)

>>

The single-angle bracket is Racket’s prompt, and the double-
angle bracket is Grasp’s prompt. To quit the Grasp inter-
preter, send an end-of-file (ˆD) character. The interpreter
keeps an implicit context, and commands typed at the top
level are evaluated as stages to which the implicit context is
applied. The interpreter also supports the following top-level
special commands:

#top displays the implicit context

#load replaces the implicit context with a file in the current
working directory, e.g. #load Lists reads and evaluates
the file ./Lists.grasp and replaces the implicit context
with the result.

#import composes the implicit context with a file in the
current working directory, e.g. #import Lists reads and
evaluates the file ./Lists.grasp and extends the im-
plicit context with the result.

#update composes the implicit context with the result of
evaluation a given term, e.g. #update {:foo → 17}
extends the implicit context with a binding that maps
symbol foo to symbol 17.

#trace toggles displaying of the individual steps in an eval-
uation

#exec replaces special symbols in the most recent result
and re-evaluates it. Right now, the only special sym-
bols are for arithmetic: plus, minus, times, divide,
less − than?, and equals?. Beware: exec is currently
very buggy.

6.2 Architecture-dependent Evaluation

Suppose we acquire a large and complex body of code that
contains many fragments like this:

1 + (if x86 then (2 + 3) else (2 - 3))

We can store and recall this fragment into the interpreter.

>> #update {:f -> 1 + (if x86 then

(2 + 3) else (2 - 3))}

>> f

-- 1 + (if x86 then (2 + 3) else (2 - 3))

We can also store the fact that this computer is an x86.

>> #update {:x86 -> true}

>> x86

-- true

When we re-evaluate the program, this new fact is reflected.

>> f

-- 1 + (if true then (2 + 3) else (2 - 3))

To evaluate this term any further, we must implement the
if-expression. First, we implement a generic symbol-based
test-expression.
>> #update {:test -> (:true -> \x.\y.{} x;

:false -> \x.\y.{} y)}

This maps the symbol test to a set of macros that rewrite
their argument only once and then disappear. For example,
>> test true

-- \x.\y.{} x

When the test succeeds, we get back a function that con-
sumes two arguments and does something the first. Test fail-
ure is similar. The empty context serves as the “bottom”
value. Because the empty context does no rewriting on its
own, it is useful for forcing stages. This means that the
second and third arguments to the test-expression must be
staged.

To tie this binding into the original program, we need to
translate the if-expression syntax to test-expression syntax.
>> #update {:if x :then y :else z -> test x .y .z}

>> if true then 1 else 2

-- 1

>> if false then 1 else 2

-- 2

Now, the original program can make more progress.
>> f

-- 1 + (2 + 3)

The value f maps to has not actually changed.
>> #top

-- {:f -> 1 + (if x86 then (2 + 3) else (2 ...

>> #trace

>> f

f

1 + (if x86 then (2 + 3) else (2 - 3))

1 + (if true then (2 + 3) else (2 - 3))

1 + (test true .(2 + 3) .(2 - 3))

1 + ((: true -> \x.\y.{} x;: false -> ...

1 + ((\x.\y.{} x) .(2 + 3) .(2 - 3))

1 + ({:x -> .(2 + 3)} .(\y.{} x) .(2 - 3))

1 + ({:x -> .(2 + 3)} .(\y.{} .(2 + 3)) ...

1 + ((\y.{} .(2 + 3)) .(2 - 3))

1 + ({:y -> .(2 - 3)} .({} .(2 + 3)))

1 + ({:y -> .(2 - 3)} .(2 + 3))

1 + (2 + 3)

-- 1 + (2 + 3)

If we expect to run this program often, we can store the
partially evaluated result.
>> #update {: fx86test -> 1 + (2 + 3)}

In order to evaluate this term any further, we need an im-
plementation of arithmetic. This interpreter provides built-in
prefix notation for addition (plus) and subtraction (minus),
but we must explicitly fix the built-in symbols. First, let’s
add rules for converting from infix to prefix notation.



>> #update {x :+ y -> plus x y; x :- y -> minus x y}

Now, we can finish evaluating the original program. First,
we recall the partially evaluated result.

>> fx86test

fx86test

1 + (2 + 3)

plus 1 (2 + 3)

plus 1 (plus 2 3)

-- plus 1 (plus 2 3)

Then, we fix the built-in symbols and continue evaluation.

>> #exec

#plus 1 (#plus 2 3)

#(plus 1) (#plus 2 3)

#(plus 1) (#( plus 2) 3)

#(plus 1) 5

6

-- 6

If our underlying system architecture changes, we should re-
evaluate the original program.

>> #update {:x86 -> false}

>> f

f

1 + (if x86 then (2 + 3) else (2 - 3))

1 + (if false then (2 + 3) else (2 - 3))

1 + (test false .(2 + 3) .(2 - 3))

1 + ((: true -> \x.\y.{} x;: false -> ...

1 + ((\x.\y.{} y) .(2 + 3) .(2 - 3))

1 + ({:x -> .(2 + 3)} .(\y.{} y) .(2 - 3))

1 + ((\y.{} y) .(2 - 3))

1 + ({:y -> .(2 - 3)} .({} y))

1 + ({:y -> .(2 - 3)} .({} .(2 - 3)))

1 + ({:y -> .(2 - 3)} .(2 - 3))

1 + (2 - 3)

plus 1 (2 - 3)

plus 1 (minus 2 3)

-- plus 1 (minus 2 3)

>> #exec

#plus 1 (#minus 2 3)

#(plus 1) (#minus 2 3)

#(plus 1) (#( minus 2) 3)

#(plus 1) -1

0

-- 0

Notice that we saved several steps by keeping track of the
pre-exec result. This concludes a simple demonstration of
bindings, functions, and partial evaluation.

6.3 Propositional Logic

We also include simple programs for performing Boolean,
list, and simple numeric operations. Note that the Numbers
program is buggy because we have not yet worked out the
kinks in #exec. We also provide a program for converting
logic statements into conjunctive normal form.

-- Determines the conjunctive normal form (CNF)

-- of a formula.

--

-- Formula syntax:

-- ~ negation

-- & conjunction

-- | disjunction

-- >> implication

-- <> equivalence

--

-- XXX: variable capture! ~ (B | C)

-- double negagive

{ :~ (:~ A) -> A

-- DeMorgan ’s laws

; :~ (A :& B) -> (~ A) | (~ B)

; :~ (A :| B) -> (~ A) & (~ B)

-- associativity

; A :& (B :& C) -> A & B & C

; A :| (B :| C) -> A | B | C

-- distributivity

; (A :& B) :| C -> (A | C) & (B | C)

; A :| (B :& C) -> (A | B) & (A | C)

-- implication

; A :>> B -> (~ A) | B

-- equivalence

; A :<> B -> (A >> B) & (B >> A)

}

-- literals

{ :literal? (_ :| _) -> false

; :literal? (_ :& _) -> false

; :literal? (:~ A) -> literal? A

; :literal? _ -> true

}

We first load the program

>> #load CNF

Now we can program in propositional logic.

>> a >> b

-- ~ a | b

>> a <> b

-- ~ a | b & (~ b | a)

>> a >> (b & c)

-- ~ a | b & (~ a | c)

>> a & (~ (a | b))

-- a & (~ a) & (~ b)

>> a | (~ (b & (~ c)))

-- a | (~ b) | c

>>

We can also evaluate logical statement.

>> #update {:a -> true; :b -> false}

>> a >> (b & c)

-- false

>> a <> (b & c)

-- false

>> a & (~ b)

-- true

>>

7. Grasp is a Platform
Grasp’s vast problem space, broad vision, and early devel-
opment history are analogous to those of Smalltalk-72 [9],
differing primarily in terms of background and setting.
Smalltalk implements a vision to, among other things, make



computer programming accessible to children, while Grasp
implements the hopes and dreams of a programmer accu-
mulated since childhood1. In this sense, Grasp quite literally
aims to be a next-generation Smalltalk. Ultimately, we seek
to expand the social dimension of computing to degrees not
possible before widespread success of the Internet and so-
cial networking. More specifically, Grasp as a platform aims
to replace basic collaborative functionality like the Web,
email, and instant messaging, and includes plans for rich
data sources like smart phones and tablets. One major goal
is to fuse social and distributed computing in new ways to
allow safe and responsible sharing of computing resources.

8. Future Work
The implementation is not yet robust enough for real work.
Among other things, implementation-dependent #exec func-
tionality is quite buggy, and patterns are limited to symbols
not reserved by the core semantics, e.g. braces or equals
signs can not be matched. We also need a more complete
standard library with less tricky number semantics.

The design is also still brittle, especially with respect to
contexts and stages—we are still working these details out.
Perhaps a formal theory will lead to this. Most disconcerting
are the various way to get in trouble with variable capture.
For example, the following divergent propositional logic
term has no obvious fix:

(λx.x y) x

These are all short term goals. In the longer term, we plan
to design and implement streams and networking. We also
plan to work on a fully intuitionistic pluggable type system
to give Grasp a pluggable static dynamic type system.

9. Conclusion
In this report, we have presented pluggable programming—
a novel approach to software construction and evaluation
that revolutionizes how we think about large programs with
loosely-connected components. We demonstrated the utility
of this approach with the Grasp programming language, and
outlined a broad vision in which pluggable programming can
enable people to create and share functionality as well as
computing resources responsibly. Much work remains, but
the fun has just begun.

1 My obsession with programming languages began at age 9, when I dis-
covered a GW-BASIC reference manual.

A. Formal Semantics

A.1 Core

t ::= x symbol
| t t application
| t; t extension
| p→ t binding
| {t} context
| .t stage
| ‘t quote
| λx.t function

p ::= skip pattern
| ‘:x literal pattern
| x symbol pattern
| p p application pattern
| p; p extension pattern
| p→ p binding pattern
| {p} context pattern
| .p stage pattern
| ‘p quote pattern
| λp.p function pattern

t −→ t

(E-APP1)
t1 −→ t′1

t1 t2 −→ t′1 t2

(E-APP2)
t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-EXT1)
t1 −→ t′1

t1; t2 −→ t′1; t2

(E-EXT2)
t2 −→ t′2

v1; t2 −→ v1; t
′
2

(E-FUNAPP)
(λx11.t12) v2 −→ {‘:x11 → v2} .t12

A.2 Binding

(E-BIND)
µ pk1 tk2 t2 = t′2

(vi〈k; pk1 → tk2; vi〉k) t2 −→ t′2

A.2.1 Pattern

t −→ t

(E-SKIPPAT)
. .t2 −→ match {}

(E-LITPAT)
x1 = x2

.:x1 .x2 −→ match {}
(E-SYMPAT)

.x1 .t2 −→ match {:x1 → t2}

(E-APPPAT)
.p1 .t3 ⇓ match t′3 .p2 .t4 ⇓ match t′4
.(p1 p2) .(t3 t4) −→ match (t′3 t

′
4)



(E-EXTPAT)
.(p1; p2) .(t3; t4) −→ .(p1 p2) .(t3 t4)

(E-BINDPAT)
.(p1 → p2) .(p3 → t4) −→ .(p1 p2) .(p3 t4)

(E-CTXPAT1)
.{p1} .{t2} −→ .p1 .t2

(E-CTXPAT0)
.{} .{} −→ match {}

(E-STAGEPAT)
..p1 ..t2 −→ .p1 .t2

(E-QUOTEPAT)
.‘p1 .‘t2 −→ .p1 .t2

(E-FUNPAT)
.(λp1.p2) .(λx3.t4) −→ .(p1 p2) .(x3 t4)

A.3 Context

(E-CTX)
ti −→ t′i

{ti} −→ {t′i}

(E-COMMACRO)
p2 = pk1

{vi〈k; pk1 → tk2; vi〉k} {p2 → t3}
−→ {vi〈k; pk1 → t3; vi〉k}

(E-COM3)
{vi} {vj} −→ {vi} {vj=1} {vj〉1}

(E-COM2)
{vi≤n} {vn+1} −→ {vi≤n+1}

A.4 Closure

t −→ t

(E-STEP)
t2 −→ t′2

{vi} .t2 −→ {vi} .t′2

(E-LOOP)
vi v2 −→ v′2

{vi} .v2 −→ {vi} .v′2

(E-RET)
vi v2 6−→

{vi} .v2 −→ ρ v2

A.5 Substitution

Define FV(t), the set of free variables in term t, as follows:

FV(x1) = {x1}
FV(t1 t2) = FV(t1) ∪ FV(t2)
FV(t1; t2) = FV(t1) ∪ FV(t2)
FV(t1 → t2) = FV(t2) \ FV(t1)
FV({t1}) = FV(t1)
FV({}) = ∅
FV(.t1) = FV(t1)
FV(‘t1) = ∅
FV(λx1.t2) = FV(t2) \ {x1}

Define literals(p), the literals of pattern p, as follows:

literals(:x) = {x}
literals(x) = ∅
literals(p1 p2) = literals(p1) ∪ literals(p2)
literals(p1; p2) = literals(p1) ∪ literals(p2)
literals(p1 → p2) = literals(p1) ∪ literals(p2)
literals({}) = ∅
literals({p1}) = literals(p1)
literals(.p1) = literals(p1)
literals(‘t) = ∅
literals(λp1.p2) = literals(p1) ∪ literals(p2)

Binding expansion is a partial function. The result is unde-
fined if any recursive result is undefined.

µ p1 t2 t3 = σ t′3 t2 if .p1 .t3 ⇓ match t′3
µ p1 t2 (t31 t32) = (µ p1 t2 t31) (µ p1 t2 t32)
µ p1 t2 (t31; t32) = (µ p1 t2 t31); (µ p1 t2 t32)
µ p1 t2 (t31 → t32) = t31 → (µ p1 t2 t32)
µ {} t2 {} = t2
µ p1 t2 {t31} = {µ p1 t2 t31}
µ p1 t2 .t31 = .(µ p1 t2 t31)
µ p1 t2 (λx31.t32) =

(µ p1 t2 (λxα.(µ :x31 xα t32))

if x31 ∈ literals(p1) ∪ FV(t2)

λx31.(µ p1 t2 t32)

if x31 /∈ literals(p1) ∪ FV(t2)

Define σ {:x → v}i t, the substitution of symbols {x}i by
values {v}i in term t, as follows:

σ {:xi → vi}i x2 =

{
x2 if x2 6∈ {xi1}i
vk2 if x2 = xk1

σ {:x→ t}i (t2 t3) = (σ {:x→ t}i t2) (σ {:x→ t}i t3)
σ {:x→ t}i (t2; t3) = (σ {:x→ t}i t2); (σ {:x→ t}i t3)
σ {:xi → ti}i (p2 → t3) =

p2 → (σ {:xk1 → tk2 | xk1 6= p2} t3)
σ {:xi → ti}i {} = {}
σ {:xi → ti}i {tj}j = {σ {:xi → ti}i (tj)j}
σ {:x→ t}i .t2 = .(σ {:x→ t}i t2)
σ {:x→ t}i ‘t2 = ‘t2
σ {:x→ t}i (λx2.t3) =

σ {:x→ t}i (λxα.σ {:x2 → xα} t3)
if x2 ∈ {xi}i ∪ FV(ti)i

λx2.(σ {:x→ t}i t3)
if x2 /∈ FV(ti)i

Define ρ t, the return of term t, as follows:



ρ x1 = x1
ρ (t1 t2) = (ρ t1) (ρ t2)
ρ (t1; t2) = (ρ t1); (ρ t2)
ρ (p1 → t2) = p1 → t2
ρ {ti} = {ti}
ρ {} = {}
ρ .t1 = .(ρ t1)
ρ ‘t1 = t1
ρ (λx1.t2) = λx1.ρ t2

References
[1] G. Bracha. Pluggable type systems. In OOPSLA workshop on

revival of dynamic languages. Citeseer, 2004.
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