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Abstract

Social computing is the branch of computer science that studies the human aspects of emerg-
ing computing paradigms like social networking, but many popular Internet-based technologies
with strong social components share significant overlap in their conceptual models and imple-
mentation details. In this report, I define a subset of distributed computing systems called social
computing systems and then present a novel general-purpose social computing platform.

1 Introduction

Strictly speaking, social computing proper [15] is the branch of computer science that studies
the properties and social implications of connective, collaborative, community-based computing
paradigms like social networking. While existing social computing research is concerned with the
behavior of human participants in social computing tasks such as collaborative filtering, online
auctions, and reputation systems, many popular Internet-based technologies with strong social
components share a remarkable amount of overlap in their conceptual models and implementation
details.

In this report, I define social computing systems as the subset of distributed computing systems
that emphasize the timely flow of information between agents with potentially competing interests.
Existing social computing systems include the World Wide Web, the global e-mail delivery system,
and even a distributed social networking platform1. In a social computing system, nodes exchange
information as structured messages. For instance, an HTTP request is a sequence of key-value pairs,
as are SMTP headers and message envelopes.

Social computing systems are particularly amenable to graph models as, e.g., communication
networks induced by message passing. Even HTTP and SMTP protocol messages can be modeled
as association lists—a simple form of graph—because of their key-value link structure. Dynamic
graphs [14], or graphs that may change over time, provide a theoretical basis for modeling real-world
complex dynamic networks [8] such as social and communication networks.

In light of the inherent graph structure of common social computing tasks, I decided to study how
far the graph metaphor extends within the context of social computing systems. Graph analysis is
clearly appropriate for querying, or otherwise probing the structural properties of, induced networks
such as the aforementioned communications networks, but what are the trade-offs of adopting the
graph model for more mundane aspects like messages? Complementarily, what about for more
abstract aspects like raw computation? Can we quantify the trade-offs of heavily graph-based
systems with respect to existing solutions? Might we broaden the class of software systems that
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benefit from such an approach? In this report, I address these issues informally, within the context
of the Distributed Graph-store Processing (DGrasp) platform, a novel social computing platform
designed to leverage graph models whenever possible.

This report is organized as follows. Section 2 motivates the utility of social computing systems
by comparing DGrasp to the existing body of related work. Section 3 gives an informal description
of the DGrasp social computing platform, and sections 4 and 5 detail the case study and implemen-
tation used to derive the DGrasp platform design. Section 6 presents an informal analysis of the
platform design. Section 7 concludes.

2 Related Work

The technical merits of coordinating distributed computations as dynamic graphs have been studied
since at least the Eighties [10], and work on graph-based models for general computation [11] began
in the Seventies. More recently, interest in the Semantic Web has promoted research into graph-
structured message passing [16] as the basis for cutting edge knowledge representation and sharing
systems. In contrast to more “traditional” distributed computing paradigms, social computing
systems do not necessarily focus on the presentation of massive-scale raw computing resources as a
single virtual entity as in grid, cluster, or participatory computing systems. How, then, might we
focus social computing research efforts?

I believe that issues relevant to social computing are, as the name suggests, of a fundamentally
social nature. There is certainly no shortage in recent news reports of privacy-motivated scandals
perpetrated by governments and social network operators, but social computing systems give rise
to a host of more subtle problems that reflect real-life social issues [17] [9]. To illustrate, consider
the disparities between old and new social computing systems. Older systems like the Web and
e-mail tend to be fully distributed—ignoring the subtleties of modern IP routing, anyone with
Internet access may operate Web or e-mail servers. Although newer systems like Facebook and
Twitter leverage computer clusters and content delivery networks internally, these networks tend to
be owned and operated by a single central entity—the average social network user has little hope
for operating their own network. There is an unfortunate irony in the fact that the Web—one of
world’s most successful fully distributed software systems—gave rise to so many fully centralized
services.

To remain competitive, centralized social networking services require massive computing re-
sources which are almost universally paid for by advertising revenue. Research on existing virtual
worlds like Second Life and World of Warcraft partition competing agents as motivated by corpo-
rate, government, or citizen interests [17]. Clearly, a generic and fully distributed computational
model that admits heterogeneous ownership and operation of participating resources would shift
the burden of responsibility and control of information away from the former and toward the latter.
Social computing systems are, in this sense, a form of digital democracy. Moreover, a fully dis-
tributed system can deliver strong privacy guarantees to participants not possible in a centralized
approach [9].

A standard platform for heterogeneously owned and operated distributed systems that reduces
dependence on complex code and physical resources would dramatically reduce the existing barriers
to entry to social computing tasks for the average user. Two additional advantages to such systems
is the interoperability and performance gained by reducing dependence on low-level parsing tasks.
For instance, media file formats are designed to carry metadata for media-consuming applications
to extract and process on demand. A system with native structured messages could extract and
intern the metadata only once as part of an “import” procedure and share the extracted information
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Figure 1: Local system architecture

directly via structured message passing.
Fortunately, graph transformation and graph rewriting systems are well-studied in the literature

and can be shown to possess nice properties [7] [3] [12] [5] [18] [6] [2] [4]. Most notably, properly-
designed graph rewrite systems can be made sound, complete, confluent, and so on.

3 System Design

In order to discuss the details of the DGrasp social computing platform, we must first establish some
basic definitions and notation. Figure 1 outlines the local DGrasp system architecture. A graph-
store is essentially a structured memory manager and persistent storage mechanism. It operates
like a black box that translates between nodes and node references. A node is a set of rewrite rules
that contains its properties and edges. Primitive graph-store operations do not distinguish between
properties and edges because edges are treated as bindings from edge labels to node references, or
opaque tokens that each identify a distinct node within the graph-store. A program is a graph,
rooted at a particular node, that operates on a cursor and at least one port. Programs are drawn
as boxes. A process is an active in-memory copy of some program. Note that other sections of this
report frequently use the terms node, program, and message interchangeably.

3



port

demux

mux

...

port

remote

encode

decode

Figure 2: The dispatch architecture

A cursor is an opaque token that serves as the interface between a process and its local graph-
store. Cursors are drawn as diamonds. When given a node, the cursor stores a copy of the node in
the graph-store and returns a reference to the stored copy. When given a node reference, the cursor
produces a copy of the referenced node in memory. When given both a node and a node reference,
the cursor replaces the stored copy of the referenced node with a copy of the given node.

Each DGraph instance manages its own dispatch subsystem, from which processes, cursors, and
ports are manufactured. A port is an opaque token that serves as the interface between processes
not necessarily running within the same DGrasp instance. Ports are drawn as hexagons. Unlike
conventional TCP and UDP sockets, which are identified by a port number, DGrasp ports may be
identified by arbitrary tokens, e.g., “HTTP” or “IMAP.” There are two kinds of ports. A client port
represents the initiating side of a two-way communication channel, while a server port represents
the passive side.

The DGrasp platform implements distributed computations as tasks, or dynamic compositions
of processes that pipe information within and between distinct DGrasp instances. Programs may
register with the local dispatch their intention to handle server or client ports. The dispatch then
initiates all client port handler processes with a client port and all server port handler processes
with a server port. Processes may register new server port handlers or request additional client
ports at any time.

3.1 Important Details

The DGrasp platform design is based on the observation that complex social computing tasks may
be decomposed into relatively simple dynamic information flows. For example, Web browser-server
interactions is just structured message passing for which response messages may contain arbitrary
binary blobs, and e-mail delivery involves finite-length chains of essentially the same process run in
reverse.

Figure 2 shows the dispatch subsystem’s high-level architecture. Dispatch may be simpler than
the figure suggests because multiplexing and demultiplexing operate directly on messages as graphs,
before (after) any transport encoding (decoding) occurs. This arrangement allows DGrasp to ab-
stract away the network transport implementation details completely.
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4 Case Study: a Simple Web Server and Client

Despite the Web being perhaps the most obvious candidate for a simple social computing system,
discussion of DGrasp programs requires more detailed notation. Since space is limited, I describe
informally the details of the simple Web server program diagram in figure 4 and defer rigorous
specification to future work.

In figure 4, literal tokens appear as orange boxes. Port and cursor actions appear as green
hexagons and diamonds, respectively, with the action name in bold. Semicolons denote sequences
of operations. Nodes are denoted by simple shapes, large gray areas, or matched curly brace pairs
that link to bindings denoted by equals signs that in turn link to a left- and a right-hand child.
The structure on the left-hand side is a pattern to be matched within the evaluation context of the
containing node. The blue nodes with italicized names are variables that name the sub-graph whose
root coincides with the variable. Matching structures are replaced by their corresponding target
structure on the right-hand side of the equals sign, with all free occurrences of pattern variables
substituted as in traditional functional pattern matching. A period denotes the evaluation context
of a node. The blue diamond that contains an underscore is a special pattern that matches, without
naming, any structure. Note that this program is recursive: after each request, the web server is
re-invoked under the assumption that the port will block until the next request is available.

We may interpret this diagram as follows:

1. The web_sever program consumes a cursor and a port, then blocks until a request message
arrives on the port.

2. When the request contains GET followed by a path, the server loads the node in the local
graph-store that corresponds to the path, sends the node through the port, and waits for the
next request.

3. When the request contains PUT followed by a path and a target structure, the server stores
the target in the local graph-store at the given path, sends an OK message through the port,
and waits for the next request.

4. For request of any other form, the server sends a BAD_REQUEST message though the port and
then waits for the next request.

Figures 5 and 6 together constitute the complete simple web client, where the latter extends
the former with multiple pipe-lined requests. The interpretation of figure 5 is straight-forward: the
web_client program consumes a cursor and a port and then returns a node that contains the rules
for non-pipelined document retrieval tasks. The ellipsis indicates placement of the details covered by
figure 6. This program differs from the web server in that it simply produces an evaluation context
without any direct evaluation. This difference is due to the fact that web_server is a complete,
self-contained program, while web_client is more like a library function for other programs that
wish to retrieve Web documents. To fetch the document, a program simply evaluates a message of
the form HTTP GET some-path within the evaluation context returned by web_client.

While programs may re-use a context generated by web_client to manually pipeline requests,
such functionality is desirable in general, and so I capture a simple version of Web request pipelining
in figure 6. This program sends all of the requests in the linked list requests before receiving any
responses. For each request sent, the same responder message is used as an evaluation context to
process the corresponding response.

For comparison, here are example textual renderings of the diagrams in figures 4, 5, and 6:
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web_server :cursor :port =
{ HTTP (GET :path) =

( port send (OK (cursor load path))
; web_server cursor port
)

; HTTP (PUT :path :target) =
( cursor store path target
; port send OK
; web_server cursor port
)

; HTTP _ =
( port send BAD_REQUEST
; web_server cursor port
)

}.( HTTP (port recv) )

web_client :cursor :port =
{ HTTP :request =

( port send request
; port recv
)

; HTTP_PIPELINE :requests :responder =
{ write-loop (:request ; :rest) =

( port send request
; write-loop rest
)

; write-loop :request =
( port send request
; read-loop requests
)

; read-loop (:request ; :rest) =
( responder (port recv)
; read-loop rest
)

; read-loop :request = responder (port recv)
}.( write-loop requests )

}

5 Experiment

The project started with nothing more than a clear vision: to design a generic platform for social
computing systems. Previous work into graph-based computational models fed my intuition that
such models were a good fit for some interesting class of distributed computing systems that involved
structured message passing, so I built a simple tool to simulate remote graph-store management
operations via structured messages. The high-level implementation details are given in figure 3.
Chief insights gained from this experiment were the fact that the chosen concepts indeed fit together
well enough to do meaningful work, along with a sandbox in which to explore related projects.
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Figure 3: Implementation overview

The graph-store was implemented with Neo4j, a popular property graph database [1] written
in Java. Very simple message passing programs were written in Python, which connected to Neo4j
via the py2neo library and to remote instances via TCP sockets. Nodes were modeled as Python
dictionaries, and the encode/decode process was hard-coded into each program via the standard
Python object pickling facilities. Multiplexing was not implemented. This crude implementation
was sufficient to derive the complete DGrasp design.

6 Evaluation

Not surprisingly, graphs are a remarkably flexible medium for capturing the structures and activities
relevant to social computing systems. Furthermore, because DGrasp models everything from local
computations to distributed tasks as graph transformations, the system exhibits an unprecedented
level of homoiconicity which not only admits rich metaprogramming features like macros and REPL-
style interactions, but might also suggest novel combinations of metaprogramming features.

The simple message-passing implementation gave me enough insight into the complete DGrasp
platform design to discover that the distinction between push- and pull-based protocols is reduced
to a matter of policy, as opposed to a defining characteristic of the task at hand. I had originally
planned three case studies: Web, e-mail, and subscription-based chat; but the latter two were
ultimately obviated by the former. Specifically, a simple e-mail delivery system can be implemented
as a client-server program pair such that the roles of the two are swapped, along with a simple
routing policy implementation that determines whether to deliver, forward, or reject each incoming
request. A simple chat system can be implemented similarly by adding a “virtual circuit” matrix
to the routing policy implementation to track subscriptions. In fact, arrangements such as these e-
mail and chat networks constitute a crude form of onion routing [13], a flexible and efficient message
routing protocol with strong privacy-preserving properties.

An interesting property of the DGrasp platform is that pipelining may occur at the message
level—between the application and network levels. Consequently, DGrasp can realize amortized
connection overhead savings not possible in distributed computing system combinations. Since
efficient distributed social computing systems inherently prefer interaction with a small set of trusted
remote systems, we may reasonably expect the savings to be substantial.

We see similar savings through the practice of “metadata-import” as outlined in section 2. Sav-
ings from metadata extraction and transformed into a format more conducive to distributed graph-
store processing (i.e., structured message passing) may potentially be realized by each participant
in, and at each step of, tasks such as media processing and sharing. Because the modern Web is
essentially a giant media processing and sharing platform, we may reasonably expect significant
overall savings.
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While the DGrasp platform design exhibits remarkable qualities in terms of flexibility, its raw
performance characteristics remain undiscovered. Before DGrasp can be deployed in a production
setting, it must be subject to rigorous analyses to determine suitability for varying levels of detail.
The experiment detailed in this report demonstrates that DGrasp is at least capable of handling
extremely simple Web or messaging applications, but nothing more. Application of existing work on
graphs, including dynamic graphs and graph transformations, should prove useful for illuminating
any hard bounds on performance.

7 Conclusion

In this report, I identified the social computing class of distributed systems and motivated the
informal design of DGrasp, a novel social computing platform, through a case study and a simple
graph-based message passing experiment. Despite the simplicity apparent in the design of the
DGrasp platform, architecting general purpose distributed computing platforms is no small feat.
In particular, choosing simple abstractions that enhance flexibility without obviously sacrificing
performance can be overwhelming due to the sheer number of possibilities. Indeed, a significant
portion of this project was dedicated to comprehensive literature survey to determine that social
computing was an appropriate context in which to explore distributed computing platforms of
generality sufficient enough to capture a broad range of useful applications. Fortunately, critical
insights were achieved early enough in the project to make substantial progress on the design. Most
notably, I realized the duality of nodes, programs, and messages.

Though the unusual flexibility of distributed graph-store processing stands as compelling evi-
dence of the utility of such systems, much work remains before the paradigm can be considered of
practical use. Specifically, I would like to pursue rigorous analysis of the performance characteristics
of DGrasp in particular and social computing platforms in general, as well as a proper formalism for
social computing systems. Indeed, I expect to make progress along these lines over the upcoming
academic year.
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Figure 4: A simple web server



Figure 5: A simple web client



Figure 6: A pipelining web client
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